【題目】已知點,直線
:
,點
為
上一動點,過
作直線
,
為
的中垂線,
與
交于點
,設點
的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)若過的直線與Γ交于
兩點,線段
的垂直平分線交
軸于點
,求
與
的比值.
科目:高中數學 來源: 題型:
【題目】為了解某地網民瀏覽購物網站的情況,從該地隨機抽取100名網民進行調查,其中男性、女性人數分別為45和55.下面是根據調查結果繪制的網民日均瀏覽購物網站時間的頻率分布直方圖,將日均瀏覽購物網站時間不低于40分鐘的網民稱為“網購達人”,已知“網購達人”中女性有10人.
(1)根據已知條件完成下面的列聯表,并判斷是否有90%的把握認為是否為“網購達人”與性別有關;
非網購達人 | 網購達人 | 總計 | |
男 | |||
女 | 10 | ||
總計 |
(2)將上述調査所得到的頻率視為概率,現在從該地的網民中隨機抽取3名,記被抽取的3名網民中的“網購達人”的人數為X,求X的分布列、數學期望和方差
.
參考公式:,其中
.
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.
平面
,
,
,以
的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).
(1)證明:平面
,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,且離心率為
,過其右焦點F的直線
交橢圓C于M,N兩點,交y軸于E點.若
,
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為4,右焦點為
,且橢圓
上的點到點
的距離的最小值與最大值的積為1,圓
與
軸交于
兩點.
(1)求橢圓的方程;
(2)動直線與橢圓
交于
兩點,且直線
與圓
相切,求
的面積與
的面積乘積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】魏晉時期數學家劉徽在他的著作《九章算術注》中,稱一個正方體內兩個互相垂直的內切圓柱所圍成的幾何體為“牟合方蓋”(如圖所示),劉徽通過計算得知正方體的內切球的體積與“牟合方蓋”的體積之比應為.若“牟合方蓋”的體積為
,則正方體的外接球的表面積為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在高二年級開設選修課,選課結束后,有6名同學要求改選歷史,現歷史選修課開有三個班,若每個班至多可再接收3名同學,那么不同的接收方案共有( )
A.150種B.360種C.510種D.512種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面
平面
是邊長為2的等邊三角形,點
是
的中點,底面
是矩形,
,
為
上一點,且
.
(1)若,點
是
的中點,求證:平面
平面
;
(2)是否存在,使得直線
與平面
所成角的正切值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com