【題目】如圖,在四棱錐中,已知平面
平面
是邊長為2的等邊三角形,點
是
的中點,底面
是矩形,
,
為
上一點,且
.
(1)若,點
是
的中點,求證:平面
平面
;
(2)是否存在,使得直線
與平面
所成角的正切值為
?若存在,求出
的值;若不存在,請說明理由.
【答案】(1)證明見解析;(2)存在;
【解析】
(1)先根據三角形的中位線和矩形的性質得到線線平行,再根據面面平行的判定定理證明即可;(2)建立空間直角坐標系,利用空間向量法求解.
解:(1)因為,所以
為
的中點,
因為點是
的中點,所以
,
又底面是矩形,所以
,所以
.
在中,由點
是
的中點,
為
的中點,得
.
又,
平面
,
平面
,
,
平面
,
平面
,
所以平面平面
.
(2)連接,因為
是邊長為2的等邊三角形,點
是
的中點,所以
.又平面
平面
,平面
平面
,
所以平面
.
以點為坐標原點,
所在直線分別為
軸,過點
且平行于
的直線為
軸建立如圖所示的空間直角坐標系,
則,
.
設平面的法向量為
,
則得
所以
,令
,則
,
所以平面的一個法向量為
.
設直線與平面
所成的角為
,
則.
假設存在符合題意的,
因為,所以
,
所以,化簡整理得
,得
.
所以當,即
為線段
的中點時,直線
與平面
所成角的正切值為
.
科目:高中數學 來源: 題型:
【題目】已知點,直線
:
,點
為
上一動點,過
作直線
,
為
的中垂線,
與
交于點
,設點
的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)若過的直線與Γ交于
兩點,線段
的垂直平分線交
軸于點
,求
與
的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下列命題:
①函數在
上單調遞減,在
上單調遞增;
②若函數在
上有兩個零點,則
的取值范圍是
;
③當時,函數
的最大值為0;
④函數在
上單調遞減;
上述命題正確的是_________(填序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱柱中,側面
為菱形,
,
,側面
為正方形,平面
平面
.點
為線段
的中點,點
在線段
上,且
.
(1)證明:平面平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為
,且成績分布在
,分數在
以上(含
)的同學獲獎.按女生、男生用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值
(同一組中的數據用該組區間的中點值作代表);
(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過
的前提下能否認為“獲獎與女生、男生有關”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點的直線l與拋物線
交于A,B兩點,以AB為直徑作圓,記為
,
與拋物線C的準線始終相切.
(1)求拋物線C的方程;
(2)過圓心M作x軸垂線與拋物線相交于點N,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年新冠肺炎疫情暴發以來,中國政府迅速采取最全面、最嚴格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關知識,某高中學校開展了線上新冠肺炎防控知識競答活動,現從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數據統計結果如圖:
(1)若此次知識競答得分整體服從正態分布,用樣本來估計總體,設
,
分別為這200名幸運者得分的平均值和標準差(同一組數據用該區間中點值代替),求
,
的值(
,
的值四舍五入取整數),并計算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于的獲得1次抽獎機會,得分不低于
的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學是這次活動中的幸運者,記
為該同學在抽獎中獲得紅包的總金額,求
的分布列和數學期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數據:;
;
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com