【題目】如圖,在直角梯形中,
∥
,
,
,將直角梯形
沿對角線
折起,使點
到
點位置,則四面體
的體積的最大值為________,此時,其外接球的表面積為________.
科目:高中數學 來源: 題型:
【題目】已知直線與橢圓
交于不同的兩點
,
.
(1)若線段的中點為
,求直線
的方程;
(2)若的斜率為
,且
過橢圓
的左焦點
,
的垂直平分線與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
(Ⅰ)將頻率視為概率. 若乙套設備生產了5000件產品,則其中的不合格品約有多少件;
(Ⅱ)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(Ⅲ)根據表1和圖1,對兩套設備的優劣進行比較.
附:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為
,且過點
,點P在第四象限, A為左頂點, B為上頂點, PA交y軸于點C,PB交x軸于點D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是( )
A.CPI一籃子商品中所占權重最大的是居住
B.CPI一籃子商品中吃穿住所占權重超過50%
C.豬肉在CPI一籃子商品中所占權重約為2.5%
D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4 — 4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(
).
(1)分別寫出直線的普通方程與曲線
的直角坐標方程;
(2)已知點,直線
與曲線
相交于
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某數學小組從醫院和氣象局獲得2018年1月至6月份每月20的晝夜溫差,(
)和患感冒人數(
/人)的數據,畫出如圖的折線圖.
(1)建立關于
的回歸方程(精確到0.01),預測2019年1月至6月份晝夜溫差為
時患感冒的人數(精確到整數);
(2)求與
的相關系數,并說明
與
的相關性的強弱(若
,則認為
與
具有較強的相關性),
參考數據:,
,
,
,
相關系數:,回歸直線方程是
,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com