【題目】某企業要設計制造一批大小、規格相同的長方體封閉水箱,已知每個水箱的表面積為432(每個水箱的進出口所占面積與制作材料的厚度均忽略不計).每個長方體水箱的底面長是寬的2倍.現設每個長方體水箱的底面寬是,用
表示每個長方體水箱的容積.
(1)試求函數的解析式及其定義域;
(2)當為何值時,
有最大值,并求出最大值.
科目:高中數學 來源: 題型:
【題目】已知函數 (a是常數且a>0).對于下列命題:
①函數f(x)的最小值是-1;
②函數f(x)在R上是單調函數;
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意的x1<0,x2<0且x1≠x2,恒有
.
其中正確命題的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
是自然對數的底數.
(1)若,
,證明
;
(2)是否存在實數,使得函數
在區間
上有兩個零點?若存在,求出
的取值范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時,即2078年為________年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發商計劃建造一個矩形游泳池及左右兩側兩個大小相同的矩形休息區,其中半圓的圓心為
,半徑為
,矩形
的一邊
在
上,矩形
的一邊
在
上,點
在圓周上,
在直徑上,且
,設
.若每平方米游泳池的造價與休息區造價之比為
.
(1)記游泳池及休息區的總造價為,求
的表達式;
(2)為進行投資預算,當為何值時,總造價最大?并求出總造價的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1),在平面五邊形中,已知四邊形
為正方形,
為正三角形.沿著
將四邊形
折起得到四棱錐
,使得平面
平面
,設
在線段
上且滿足
,
在線段
上且滿足
,
為
的重心,如圖(2).
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點,求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
是正三角形,
為
的中點,平面
平面
.
(1)求證:平面
;
(2)在棱上是否存在點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
),其中離心率
,點
為橢圓
上的動點,
為橢圓的左右焦點,若
面積的最大值為
.
(1)求橢圓的標準方程;
(2)直線 交橢圓
于
兩點,點
是橢圓
的上頂點,若
,試問直線
是否經過定點,若經過定點,求出定點坐標,否則說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com