【題目】某三棱錐的三視圖如圖所示,則該三棱錐的各個面中,最大的面積是( )
A.
B.1
C.
D.
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (e為自然對數的底數,e=2.71828…).
(1)證明:函數f(x)為奇函數;
(2)判斷并證明函數f(x)的單調性,再根據結論確定f(m2﹣m+1)+f(﹣ )與0的大小關系;
(3)是否存在實數k,使得函數f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(m,﹣1),
=(
)
(1)若m=﹣ ,求
與
的夾角θ;
(2)設 . ①求實數m的值;
②若存在非零實數k,t,使得[ +(t2﹣3)
]⊥(﹣k
+t
),求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓A:(x+2)2+y2=1,圓B:(x﹣2)2+y2=49,動圓P與圓A,圓B均相切.
(1)求動圓圓心P的軌跡方程;
(2)已知點N(2, ),作射線AN,與“P點 軌跡”交于另一點M,求△MNB的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,經過村莊A有兩條互相垂直的筆直公路AB和AC,根據規劃擬在兩條公路圍成的直角區域內建一工廠P,為了倉庫存儲和運輸方便,在兩條公路上分別建兩個倉庫M,N(異于村莊A,將工廠P及倉庫M,N近似看成點,且M,N分別在射線AB,AC上),要求MN=2,PN=1(單位:km),PN⊥MN.
(1)設∠AMN=θ,將工廠與村莊的距離PA表示為θ的函數,記為l(θ),并寫出函數l(θ)的定義域;
(2)當θ為何值時,l(θ)有最大值?并求出該最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com