精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= +lnx在(1,+∞)上是增函數,且a>0.
(1)求a的取值范圍;
(2)求函數g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)設a>1,b>0,求證:

【答案】
(1)解:f(x)的導數為f′(x)=﹣ +

因為函數f(x)在(1,+∞)上是增函數,

所以f′(x)=﹣ + ≥0在(1,+∞)上恒成立,

即x≥ 在(1,+∞)上恒成立,

所以只需1≥ ,

又因為a>0,所以a≥1


(2)解:因為x∈[0,+∞),所以g′(x)= ﹣1= ≤0

所以g(x)在[0,+∞)上單調遞減,

所以g(x)=ln(1+x)﹣x在[0,+∞)上的最大值為g(0)=0


(3)解:證明:因為a>1,b>0,所以 >1,

由(1)知f(x)= +lnx在(1,+∞)上是增函數,所以f( )>f(1),

+ln >0,化簡得 <ln ,

又因為 =1+

由第(2)問可知g( )=ln(1+ )﹣ <g(0)=0,

即ln

綜上 得證


【解析】(1)求出函數的導數,由函數f(x)在(1,+∞)上是增函數,所以f′(x)=﹣ + ≥0在(1,+∞)上恒成立,運用參數分離,求得最值即可;(2)求得g(x)的導數,求得單調性,即可得到最小值;(3)由(1)知f(x)= +lnx在(1,+∞)上是增函數,所以f( )>f(1),由第(2)問可知g( )=ln(1+ )﹣ <g(0)=0,化簡即可得證.
【考點精析】通過靈活運用利用導數研究函數的單調性和函數的最大(小)值與導數,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減;求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個實數根.
(1)是否存在實數k,(2x1﹣x2)(x1﹣2x2)=﹣ 成立?若存在,求出k的值;若不存在,請說明理由.
(2)求使 + ﹣2的值為整數的實數k的整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區2007年至2013年農村居民家庭人均純收入y(單位:千元)的數據如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex+ax﹣1(e為自然對數的底數). (Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調遞增區間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求實數m的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,點E是棱AA1的中點,則異面直線DE與BC所成的角的余弦值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一艘船在航行過程中發現前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點距水面8m,拱橋內水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.

(1)建立適當的平面直角坐標系,求正常水位時圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點P在圓O:x2+y2=8上運動,PD⊥x軸,D為垂足,點M在線段PD上,滿足
(1)求點M的軌跡方程;
(2)過點Q(1, )作直線l與點M的軌跡相交于A、B兩點,使點Q為弦AB的中點,求直線l的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视