【題目】已知雙曲線 C1: =1( a>0,b>0),圓 C2:x2+y2﹣2ax+
a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個不同的交點,則雙曲線 C1 的離心率的范圍是( )
A.(1, )
B.( ,+∞)
C.(1,2)
D.(2,+∞)
科目:高中數學 來源: 題型:
【題目】已知雙曲線C1: 一焦點與拋物線y2=8x的焦點F相同,若拋物線y2=8x的焦點到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動點,Q(1,3),則|PF|+|PQ|的最小值為( )
A.4
B.4
C.4
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數y=f(x)的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)設bn= ,求證:數列{bn}是等差數列,并求出{an}的通項公式an;
(Ⅱ)設Cn= ,數列{CnCn+2}的前n項和為Tn , 是否存在正整數m,使得Tn<
對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科技博覽會展出的智能機器人有 A,B,C,D 四種型號,每種型號至少有 4 臺.要求每 位購買者只能購買1臺某種型號的機器人,且購買其中任意一種型號的機器人是等可能的.現在有 4 個人要購買機器人.
(Ⅰ)在會場展覽臺上,展出方已放好了 A,B,C,D 四種型號的機器人各一臺,現把他們 排成一排表演節目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設這 4 個人購買的機器人的型號種數為ξ,求ξ 的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1 , A1C1的中點,則BM與AN所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x)=f( )且當x∈[
,1]時,f(x)=lnx,若當x∈[
]時,函數g(x)=f(x)﹣ax與x軸有交點,則實數a的取值范圍是( )
A.[﹣ ,0]
B.[﹣πlnπ,0]
C.[﹣ ,
]
D.[﹣ ,﹣
]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com