【題目】已知點,點
是直線
上的動點,過
作直線
,
,線段
的垂直平分線與
交于點
.
(1)求點的軌跡
的方程;
(2)若點是直線
上兩個不同的點,且
的內切圓方程為
,直線
的斜率為
,求
的取值范圍.
【答案】(1) ;(2)
.
【解析】試題分析:(1)利用拋物線定義求解即可;
(2)設出的三個頂點的坐標,表示出
的解析式,化簡之后可得
為關于
的方程
的兩根,然后由韋達定理表示
的長度,最后在
中消去參數
,故可以得到
的取值范圍.
試題解析: (1)據題設分析知,點的軌跡
是以點
為焦點,直線
為準線的拋物線,所以曲線
的方程為
.
(2)設,點
,點
,
直線的方程為
,
化簡,得,
又因為內切圓的方程為
.
所以圓心到直線
的距離為1,即
,
所以,
由題意,得,所以
.
同理,有,
所以是關于
的方程
的兩根,
所以因為
所以.
因為,
所以.
直線的斜率
,則
,
所以.
因為函數在
上單調遞增,所以當
時,
,
所以,所以
,
所以.所以
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】為了監控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態下生產的零件的尺寸服從正態分布.
(1)假設生產狀態正常,記X表示一天內抽取的16個零件中其尺寸在
之外的零件數,求;
(2)一天內抽檢零件中,如果出現了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得,
,其中
為抽取的第
個零件的尺寸,
.
用樣本平均數作為
的估計值
,用樣本標準差
作為
的估計值
,利用估計值判斷是否需對當天的生產過程進行檢查?剔除
之外的數據,用剩下的數據估計
和
(精確到0.01).
附:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】語文成績服從正態分布,數學成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優秀,這500名學生中本次考試語文、數學特別優秀的大約各多少人?(假設數學成績在頻率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數學兩科都特別優秀的共有6人,從(Ⅰ)中的這些同學中隨機抽取3人,設三人中兩科都特別優秀的有人,求
的分布列和數學期望.
(附參考公式)若,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“共享單車”的出現,為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的
城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據此樣本完成此列聯表,并據此樣本分析是否有
的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數據:(參考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為自然對數的底數),
是
的導函數.
(Ⅰ)當時,求證
;
(Ⅱ)是否存在正整數,使得
對一切
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為橢圓
的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線
與橢圓
有且僅有一個交點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與
軸交于
,過點
的直線與橢圓
交于兩不同點
,
,若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中
為第
題的難度,
為答對該題的人數,
為參加測試的總人數.現對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了10名學生,將他們編號后統計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;
題號 | 1 | 2 | 3 | 4 | 5 |
實測答對人數 | |||||
實測難度 |
(Ⅱ)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(Ⅲ)定義統計量,其中
為第
題的實測難度,
為第
題的預估難度
.規定:若
,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com