【題目】已知函數y=x+ 有如下性質:如果常數t>0,那么該函數在
上是減函數,在
上是增函數.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質,求函數f(x)的單調區間和值域;
(2)對于(1)中的函數f(x)和函數g(x)=﹣x﹣2a,若對任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數a的值.
【答案】
(1)解:y= =x+2+
﹣6;
設u=x+2,x∈[﹣1,1],1≤u≤3,u=x+2為增函數;
則y=u+ ﹣6,u∈[1,3];
由已知性質得,①當1≤u≤2,即﹣1≤x≤0時,f(x)單調遞減;
∴f(x)的減區間為[﹣1,0];
②當2≤u≤3,即0≤x≤1時,f(x)單調遞增;
∴f(x)的增區間為[0,1];
由f(﹣1)=﹣1,f(0)=﹣2,f(1)= ;
得f(x)的值域為[﹣2,﹣1]
(2)解:g(x)=﹣x﹣2a為減函數,x∈[0,1];
故g(x)∈[﹣1﹣2a,﹣2a];
由題意,f(x)的值域是g(x)的值域的子集;
∴ ;
∴ ;
即實數a的值為
【解析】(1)根據條件,先變形f(x)= ,可令x+2=u,1≤u≤3,而函數u=x+2為增函數,從而根據復合函數的單調性及已知的性質便可得出f(x)的減區間為[﹣1,0],增區間為[0,1],進一步便可得出f(x)的值域為[﹣2,﹣1];(2)根據題意便知f(x)的值域為g(x)的子集,而容易求出g(x)的值域為[﹣1﹣2a,﹣2a],從而得出
,這樣即可得出實數a的值.
【考點精析】解答此題的關鍵在于理解函數單調性的判斷方法的相關知識,掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較,以及對函數的值的理解,了解函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.
科目:高中數學 來源: 題型:
【題目】某機構為了解某地區中學生在校月消費情況,隨機抽取了100名中學生進行調查.如圖是根據調查的結果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數成等差數列,將月消費金額不低于550元的學生稱為“高消費群”.
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數 (同一組中的數據用該組區間的中點值作代表);
(2)根據已知條件完成下面2×2列聯表,并判斷能否有90%的把握認為“高消費群”與性別有關?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校學生社團為了解“大數據時代”下大學生就業情況的滿意度,對20名學生進行問卷計分調查(滿分100分),得到如圖所示的莖葉圖:
(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;
(2)從打分在80分以上的同學隨機抽3人,求被抽到的女生人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD= CD=a,PD=
a.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求平面PAD與PBC所成銳二面角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中有這樣一則問題:“今有良馬與弩馬發長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復還迎弩馬.”則現有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時,良馬走了二十一日.
則以上說法錯誤的個數是( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】規定投擲飛鏢3次為一輪,若3次中至少兩次投中8環以上為優秀,現采用隨機模擬實驗的方法估計某人投擲飛鏢的情況:先由計算器產生隨機數0或1,用0表示該次投標未在8環以上,用1表示該次投標在8環以上;再以每三個隨機數作為一組,代表一輪的結果,經隨機模擬實驗產生了如下20組隨機數:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
據此估計,該選手投擲飛鏢三輪,至少有一輪可以拿到優秀的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1, 中,
,點
為線段
的四等分點,線段
互相平行,現沿
折疊得到圖2所示的幾何體,此幾何體的底面
為正方形.
(1)證明: 四點共面;(2)求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為: (t為參數,其中0<α<
),橢圓M的參數方程為
(β為參數),圓C的標準方程為(x﹣1)2+y2=1.
(1)寫出橢圓M的普通方程;
(2)若直線l為圓C的切線,且交橢圓M于A,B兩點,求弦AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com