精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在△ABC中,∠C=90°,以BC上一點O為圓心,以OB為半徑的圓交AB于點M,交BC于點N.

(1)求證:BABM=BCBN;
(2)如果CM是⊙O的切線,N為OC的中點,當AC=3時,求AB的值.

【答案】
(1)證明:連接MN,

則∠BMN=90°=∠ACB,

∴△ACB∽△NMB,

,

∴ABBM=BCBN


(2)解:連接OM,則∠OMC=90°,

∵N為OC中點,

∴MN=ON=OM,

∴∠MON=60°,

∵OM=OB,

∴∠B= ∠MON=30°,

∵∠ACB=90°,

∴AB=2AC=2×3=6.


【解析】(1)連接MN,構造一個直角三角形.即可把證明的線段放到兩個直角三角形中,根據相似三角形的判定和性質進行證明;(2)連接OM,根據切線的性質得到直角△COM,再根據直角三角形斜邊上的中線等于斜邊的一半,得到MN等于圓的半徑,從而發現等邊三角形OMN,再根據圓周角定理得到∠B=30°,根據30°所對的直角邊是斜邊的一半即可求得AB的長.
【考點精析】關于本題考查的一般形式的柯西不等式,需要了解一般形式的柯西不等式:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)用定義證明函數f(x)在(﹣∞,+∞)上為減函數;
(2)若x∈[1,2],求函數f(x)的值域;
(3)若g(x)= ,且當x∈[1,2]時g(x)≥0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (b≠0且b是常數).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(﹣∞,﹣1)上是增函數;
(3)若函數f(x)在(1,+∞)上是減函數,求負數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)試討論的單調性;

(2)證明:對于正數,存在正數,使得當時,有;

(3)設(1)中的的最大值為,求得最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知復數z1滿足(z1﹣2)(1+i)=1﹣i(i為虛數單位),復數z2的虛部為2,且z1z2是實數,
(1)求z1;
(2)求z2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為(25x)萬元(國家規定大貨車的報廢年限為10年).

1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計收入+銷售收入-總支出)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=ax在區間[0,2]上的最大值和最小值的和為5,則函數y=logax在區間[ ,2]上的最大值和最小值之差是(
A.1
B.3
C.4
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在10件產品中,有2件一等品,4件二等品,4件三等品,從這10件產品中任取3件,求
(1)取出的3件產品中一等品件數X的分布列和數學期望;
(2)取出的3件產品中至多有1件一等品的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的參數方程為 (θ為參數),直線l經過點P(1,1),傾斜角 ,
(1)寫出直線l的參數方程;
(2)設l與圓C相交于兩點A,B,求點P到A,B兩點的距離之積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视