精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)試討論的單調性;

(2)證明:對于正數,存在正數,使得當時,有

(3)設(1)中的的最大值為,求得最大值.

【答案】(1)證明過程如解析;(2)對于正數,存在正數,使得當時,有;(3)的最大值為

【解析】試題分析】(1)先對函數進行求導,再對導函數的值的符號進行分析,進而做出判斷;(2)先求出函數值 ,進而分兩種情形進行分析討論,推斷出存在使得,從而證得當時,有成立;(3)借助(2)的結論上有最小值為,然后分兩種情形探求的解析表達式和最大值。

證明:(1)由于 ,且,

上單調遞減,在上單調遞增.

(2)因為 ,

時,取.此時,當時,有成立.

時,由于,

故存在使得

此時,當時,有成立.

綜上,對于正數,存在正數,使得當時,有

(3)由(2)知上的最小值為

時, ,則是方程滿足的實根,

滿足的實根,

所以

上單調遞增,故

時, ,由于,

.此時,

綜上所述, 的最大值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知關于的方程的三個實根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在二項式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開式里最大系數項恰是常數項.
(1)求它是第幾項;
(2)求 的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x|x﹣2|.
(1)作出函數f(x)=x|x﹣2|的大致圖象;
(2)若方程f(x)﹣k=0有三個解,求實數k的取值范圍.
(3)若x∈(0,m](m>0),求函數y=f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga|x+1|(a>0且a≠1),當x∈(0,1)時,恒有f(x)<0成立,則函數g(x)=loga(﹣ x2+ax)的單調遞減區間是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}滿足:an+1=an2﹣nan+1,n=1,2,3,…
(1)當a1=2時,求a2 , a3 , a4并由此猜測an的一個通項公式;
(2)當a1≥3時,證明對所有的n≥1,有
①an≥n+2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,以BC上一點O為圓心,以OB為半徑的圓交AB于點M,交BC于點N.

(1)求證:BABM=BCBN;
(2)如果CM是⊙O的切線,N為OC的中點,當AC=3時,求AB的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2ex
(1)求f(x)的單調區間;
(2)若x∈[﹣2,2]時,不等式f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)是(﹣∞,0)∪(0,+∞)上的偶函數,x>0時f(x)=x﹣ ,求x<0時f(x)的表達式,判斷f(x)在(﹣∞,0)上的單調性,并用定義給出證明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视