【題目】設函數f(x)=x2ex
(1)求f(x)的單調區間;
(2)若x∈[﹣2,2]時,不等式f(x)<m恒成立,求m的取值范圍.
【答案】
(1)解:f′(x)=x(x+2)ex,
令f′(x)>0,解得:x<﹣2或x>0,
令f′(x)<0,解得:﹣2<x<0,
∴函數f(x)的單調遞增區間為(﹣∞,﹣2)和(0,+∞),遞減區間為[﹣2,0].
(2)解:
x | ﹣2 | (﹣2,0) | 0 | (0,2) | 2 |
f′(x) | 0 | + | |||
f(x) | 單減 | 極小值0 | 單增 | 4e2 |
因此x∈[﹣2,2],f(x)的最大值是4e2,
∵x∈[﹣2,2]時,不等式f(x)<m恒成立,
∴m>4e2
【解析】(1)先求出函數的導數,通過解關于導函數的不等式,求出其單調區間即可;(2)先求出f(x)在[﹣1,2]上的單調性,從而求出函數的最大值,即可求m的取值范圍.
【考點精析】利用利用導數研究函數的單調性和函數的最大(小)值與導數對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】定義在上的偶函數
,其導函數為
,若對任意的實數
,都有
恒成立,則使
成立的實數
的取值范圍為( 。
A. B. (﹣∞,﹣1)∪(1,+∞)
C. (﹣1,1) D. (﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為(25-x)萬元(國家規定大貨車的報廢年限為10年).
(1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計收入+銷售收入-總支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=ax在區間[0,2]上的最大值和最小值的和為5,則函數y=logax在區間[ ,2]上的最大值和最小值之差是( )
A.1
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在10件產品中,有2件一等品,4件二等品,4件三等品,從這10件產品中任取3件,求
(1)取出的3件產品中一等品件數X的分布列和數學期望;
(2)取出的3件產品中至多有1件一等品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ﹣
(1)證明函數f(x)是奇函數;
(2)證明函數f(x)在(﹣∞,+∞)內是增函數;
(3)求函數f(x)在[1,2]上的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com