【題目】已知拋物線C:(
)的焦點F到準線l的距離為2,直線
過點F且與拋物線交于M、N兩點,直線
過坐標原點O及點M且與l交于點P,點Q在線段
上.
(1)求直線的斜率;
(2)若,
,
成等差數列,求點Q的軌跡方程.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某公司一種產品的日銷售量(單位:百件)關于日最高氣溫
(單位:
)的散點圖.
數據:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)請剔除一組數據,使得剩余數據的線性相關性最強,并用剩余數據求日銷售量關于日最高氣溫
的線性回歸方程
;
(2)根據現行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補貼.已知某日該產品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當天是否可享受高溫補貼?
附:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
的焦距為
,直線
(
)與
交于兩個不同的點
、
,且
時直線
與
的兩條漸近線所圍成的三角形恰為等邊三角形.
(1)求雙曲線的方程;
(2)若坐標原點在以線段
為直徑的圓的內部,求實數
的取值范圍;
(3)設、
分別是
的左、右兩頂點,線段
的垂直平分線交直線
于點
,交直線
于點
,求證:線段
在
軸上的射影長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知首項為的數列
各項均為正數,且
,
.
(1)若數列的通項
滿足
,且
,求數列
的前n項和為
;
(2)若數列的通項
滿足
,前n項和為
,當數列
是等差數列時,對任意的
,均存在
,使得
成立,求滿足條件的所有整數
構成的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海域有兩個島嶼,
島在
島正東4海里處,經多年觀察研究發現,某種魚群洄游的路線是曲線
,曾有漁船在距
島、
島距離和為8海里處發出過魚群。以
所在直線為
軸,
的垂直平分線為
軸建立平面直角坐標系.
(1)求曲線的標準方程;
(2)某日,研究人員在兩島同時用聲納探測儀發出不同頻率的探測信號(傳播速度相同),
兩島收到魚群在
處反射信號的時間比為
,問你能否確定
處的位置(即點
的坐標)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com