精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=
(1)判斷函數在區間[1,+∞)上的單調性,并用定義證明你的結論.
(2)求該函數在區間[1,4]上的最大值與最小值.

【答案】
(1)解:任取x1,x2∈[1,+∞),且x1<x2

f(x1)﹣f(x2)= = ,

∵x1﹣x2<0,(x1+1)(x2+1)>0,

所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),

所以函數f(x)在[1,+∞)上是增函數


(2)解:由(1)知函數f(x)在[1,4]上是增函數,

∴最大值f(4)= ,最小值f(1)=


【解析】(1)根據增函數的定義進行判斷和證明;(2)利用(1)的結論,利用函數的單調性.
【考點精析】關于本題考查的函數的值域和函數單調性的判斷方法,需要了解求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的;單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,多面體是由三棱柱截去一部分后而成, 的中點.

(Ⅰ)若上,且的中點,求證:直線//平面

(Ⅱ) 若平面 , 求點到面的距離;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ax+(k﹣1)ax(a>且a≠1)是定義域為R的奇函數.
(1)求k值;
(2)若f(1)>0,試判斷函數單調性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
(3)若f(1)= ,設g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知),定義.

(1)求函數的極值

(2)若,且存在使,求實數的取值范圍;

(3)若,試討論函數)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中均為實數, 為自然對數的底數.

(I)求函數的極值;

(II)設,若對任意的,

恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠家擬在2017年舉行促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)(單位:萬件)與年促銷費用(單位:萬元)()滿足 為常數),如果不搞促銷活動,則該產品的年銷售量只能是1萬件.已知2017年生產該產品的固定投入為8萬元.每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數;

(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知: 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標.
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(Ⅰ)若,求在點處的切線方程;

(Ⅱ)討論函數的單調性;

(Ⅲ)若存在兩個極值點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求

(2)設圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视