【題目】如圖,設長方體中,
,
,
是
的中點,點
在線段
上.
(1)試在線段上確定點
的位置,使得異面直線
與
所成角為
,并請說明你的理由;
(2)在滿足(1)的條件下,求四棱錐的體積.
科目:高中數學 來源: 題型:
【題目】某工廠生產一批零件,為了解這批零件的質量狀況,檢驗員從這批產品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質量指標值.由檢測結果得到如下頻率分布直方圖.
分組 | 頻數 | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中的值;
(2)根據質量標準規定:零件重量小于47或大于53為不合格品,重量在區間和
內為合格品,重量在區間
內為優質品.已知每件產品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共
件
,現有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進行回收處理,其余零件均按150元/件售出;方案二:繼續對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優質品按200元/件售出.僅從獲得利潤大的角度考慮,該生產商應選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知是橢圓
的左焦點,且橢圓
經過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線
交橢圓
于
、
兩點,線段
的中點為
,過
且與
垂直的直線與
軸和
軸分別交于
、
兩點,記
、
的面積分別為
、
.若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
(1)根據莖葉圖中的數據完成列聯表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附: .
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且
0,若過 A,Q,F2三點的圓恰好與直線
相切,過定點 M(0,2)的直線
與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線
的斜率
,在x軸上是否存在點P(
,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:“雙曲線
任意一點
到直線
的距離分別記作
,則
為定值”為真命題.
(1)求出的值.
(2)已知直線 關于y軸對稱且使得
上的任意點到
的距離
滿足
為定值,求
的方程.
(3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓
交于
兩點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且曲線
與
恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點
,
滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節大家都會品嘗的食品,傳說這是為了紀念戰國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com