【題目】已知拋物線,焦點為
,準線為
,線段
的中點為
.點
是
上在
軸上方的一點,且點
到
的距離等于它到原點
的距離.
(1)求點的坐標;
(2)過點作一條斜率為正數的直線
與拋物線
從左向右依次交于
兩點,求證:
.
【答案】(1);(2)詳見解析.
【解析】
(1)由點到
的距離等于它到原點
的距離,得
,又
為線段
的中點,所以
,設點
的坐標為
,代入拋物線的方程,解得
,即可得到點
坐標.
(2)設直線的方程為
,代入拋物線的方程,根據根與系數的關系,求得
,
,進而得到
,進而得到直線
和
的傾斜角互補,即可作出證明.
(1)根據拋物線的定義,點到
的距離等于
,
因為點到
的距離等于它到原點
的距離,所以
,
從而為等腰三角形,
又為線段
的中點,所以
,
設點的坐標為
,代入
,解得
,
故點的坐標為
.
(2)設直線的方程為
,代入
,并整理得
,
由直線與拋物線
交于
、
兩點,得
,
結合,解得
,
由韋達定理,得,
,
,
所以直線和
的傾斜角互補,從而
,
結合軸,得
,故
.
科目:高中數學 來源: 題型:
【題目】一輛賽車在一個周長為的封閉跑道上行駛,跑道由幾段直道和彎道組成,圖
反映了賽車在“計時賽”整個第二圈的行駛速度與行駛路程之間的關系.
根據圖1,有以下四個說法:
①在這第二圈的到
之間,賽車速度逐漸增加;
②在整個跑道中,最長的直線路程不超過;
③大約在這第二圈的到
之間,賽車開始了那段最長直線路程的行駛;
④在圖的四條曲線(
為初始記錄數據位置)中,曲線
最能符合賽車的運動軌跡.
其中,所有正確說法的序號是__________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一鮮花店一個月(30天)某種鮮花的日銷售量與銷售天數統計如下:
日銷售量(枝) | 0~49 | 50~99 | 100~149 | 150~199 | 200~250 |
銷售天數(天) | 3天 | 3天 | 15天 | 6天 | 3天 |
將日銷售量落入各組區間的頻率視為概率.
(1)試求這30天中日銷售量低于100枝的概率;
(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直圖,如右圖所示.經銷商為下一個銷售季度購進了130t該農產品.以(單位:t,100≤
≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(Ⅰ)將T表示為的函數;
(Ⅱ)根據直方圖估計利潤T不少于57000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出如下四個命題:①若“且
”為假命題,則
均為假命題;②命題“若
,則
”的否命題為“若
,則
”; ③“
,則
”的否定是“
,則
”;④在
中,“
”是“
”的充要條件.其中正確的命題的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網絡外賣在市的普及情況,
市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格(單位:人).
(1)根據表中數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用網絡外賣的情況與性別有關?
(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出了3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;
②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為
,求
的數學期望和方差.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com