【題目】(2015·江蘇)在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的長;
(2)求sin2C的值.
【答案】
(1)
(2)
【解析】已知兩邊及夾角求第三邊,應用余弦定理,可得BC的長,(2) 用(1)的結果,則內余弦定理先求出角C的余弦值,再根據平方關系及三角形角的范圍求出角C的正弦值,最后利用二倍角公式求出sin2C的值.
由余弦定理知,BC2=AB2+AC2-2AB·AC·cosA=4+9-2x2x3x=7, 所以BC=
。
由正弦定理, ,所以sinC=
·sinA=
=
.
因為AB<BC, 所以C為銳角,則cosC==
=
, 因此sin2C=2sinCcosC=2x
x
=
.
【考點精析】解答此題的關鍵在于理解二倍角的正弦公式的相關知識,掌握二倍角的正弦公式:,以及對余弦定理的定義的理解,了解余弦定理:
;
;
.
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
+
=1,(a
b
0)的離心率為
,點(2,
)在C上
(1)求C的方程;
(2)直線l不經過原點O,且不平行于坐標軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)已知A、B、C為△ABC的內角,tanA、tanB是關于方程x2+px-p+1=0(p∈R)兩個實根.
(1)求C的大小
(2)若AB=1,AC=,求p的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·陜西)如圖,橢圓E:(a>b>0)經過點A(0,-1),且離心率為
.
(1)求橢圓E的方程;
(2)經過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·陜西)設fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內有且僅有一個零點(記為an), 且0<an-
<
(
)n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·江蘇) 已知函數f(x)=x3+ax2+b(a,bR).
(1)試討論f(x)的單調性;
(2)若b=c-a(實數c是a與無關的常數),當函數f(x)有三個不同的零點時,a的取值范圍恰好是(-,-3)
(1,
)
(
,+
),求c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)已知拋物線C1:x2=4y的焦點F也是橢圓C2:(a>b>0)的一個焦點,C1與C2的公共弦長為2
,過點F的直線l與C1相交于A, B兩點,與C2相交于C,D兩點,且
與
同向.
(1)求C2的方程
(2)若|AC|=|BD|,求直線l的斜率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子商務公司對10000名網絡購物者2014年度的消費情況進行統計,發現消費金額
(單位:萬元)都在區間內,其頻率分布直方圖如圖所示.
(Ⅰ)直方圖中的 ;
(Ⅱ)在這些購物者中,消費金額在區間內的購物者的人數為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com