【題目】(2015·陜西)設fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內有且僅有一個零點(記為an), 且0<an-
<
(
)n.
【答案】
(1)
fn'(2)=(n-1)2n+1
(2)
見解析。
【解析】
(1)由題設fn'(x)=1+2x+...+nxn-1, 所以fn'(2)=1+2x2+...+n2n-1, 此式等價于數列{n·2n-1}的前n項和, 由錯位相減法得fn'(2)=(n-1)2n+1。
(2)因為f(0)=-1<0, fn'()=1-2x(
)n≥1-2x(
)2>0, 所以fn(x)在在(0,
)內至少存在一個零點,又fn'(x)=1+2x+...+nxn-1>0, 所以fn(x)在(0,
)內單調遞增, 因此,fn(x)在(0,
)內有且只有一個零點an, 由于fn(x)=
-1, 所以0=fn(an)=
-1, 由此可得an=
+
ann+1>
,故
<an<
, 繼而得0<an-
=
ann+1<
x(
)n+1=
x(
)n
科目:高中數學 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記
BOP=x,將動點P到A,B兩點距離之和表示為x的函數f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)在三棱住ABC-A1B1C1中,∠BAC=90°,其正視圖和側視圖都是邊長為1的正方形,俯視圖是直角邊長為1的等腰直角三角形,設點M , N , P分別是AB , BC , B1C1的中點,則三棱錐P-A1MN的體積是 。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)已知函數f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設g(x)是f(x)的導函數,評論g(x)的單調性;
(2)證明:存在a(0,1),使得f(x)≥0,在區間(1,+
)內恒成立,且f(x)=0在(1,+
)內有唯一解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項的和記為Sn.如果a4=-12,a8=-4.
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值;
(3)從數列{an}中依次取出a1,a2,a4,a8,…,,…,構成一個新的數列{bn},求{bn}的前n項和
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)某工作的三視圖如圖3所示,現將該工作通過切削,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工作的一個面內,則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙、丙三個乒乓球協會的運動員人數分別為27,9,18,先采用分層抽樣的方法從這三個協會中抽取6名運動員參加比賽
(1)求應從這三個協會中分別抽取的運動員人數
(2)將抽取的6名運動員進行編號,編號分別為 ,從這6名運動員中隨機抽取2名參加雙打比賽.(1)用所給編號列出所有可能的結果;(2)設
為事件“編號為
的兩名運動員至少有一人被抽到”,求事件
發生的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一直函數,其中
(1)討論的單調性
(2)設曲線與
軸正半軸的交點為
,曲線在點
處的切線方程為
,求證:對于任意的正實數
,都有
(3)若關于的方程
(
為實數)有兩個正實根
,求證:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com