【題目】已知函數f(x)=x2+bx+c(b,c∈R),并設 ,
(1)若F(x)圖像在x=0處的切線方程為x﹣y=0,求b、c的值;
(2)若函數F(x)是(﹣∞,+∞)上單調遞減,則 ①當x≥0時,試判斷f(x)與(x+c)2的大小關系,并證明之;
②對滿足題設條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.
【答案】
(1)解:因為 ,所以
,
又因為F(x)圖像在x=0處的切線方程為x﹣y=0,
所以 ,即
,解得 b=1,c=0
(2)解:①因為F(x)是(﹣∞,+∞)上的單調遞減函數,所以F′(x)≤0恒成立,
即﹣x2+(2﹣b)x+(b﹣c)≤0對任意的x∈R恒成立,
所以△=(2﹣b)2+4(b﹣c)≤0,所以 ,即c>b且c≥1,
令g(x)=f(x)﹣(x+c)2=(b﹣2c)x﹣c(c﹣1),由b﹣2c<0,知g(x)是減函數,
故g(x)在[0,+∞)內取得最小值g(0),又g(0)=﹣c(c﹣1)≤0,
所以x≥0時,g(x)≤g(0)≤0,即f(x)≤(x+c)2.
②由①知,c≥|b|≥0,當|b|=c時,b=c或b=﹣c,
因為b2+4﹣4c≤0,即c2+4﹣4c≤0,解得c=2,b=2或b=﹣2,所以f(x)=x2±2x+2,
而f(c)﹣f(b)=c2+bc+c﹣b2﹣b2﹣c=c2+bc﹣2b2=(c+2b)(c﹣b),
所以f(c)﹣f(b)=﹣8或0,
不等式f(c)﹣Mc2≤f(b)﹣Mb2等價于f(c)﹣f(b)≤M(c2﹣b2),
變為﹣8≤M0或0≤M0恒成立,M∈R,
當|b|≠c時,c>|b|,即c2﹣b2>0,所以不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立等價于 恒成立,等價于
,
而 ,
因為c>|b|, ,所以
,所以
,所以
,
所以 ,所以
【解析】(1)欲求b,c的值,根據所給的切線方程,只須求出切線斜率即可,故先利用導數求出在x=0處的導函數值,再結合導數的幾何意義即可求出切線的斜率進而得切線方程,最后與所給的方程比較即得b,c的值;(2)根據函數F(x)是(﹣∞,+∞)上單調遞減,得到F′(x)≤0恒成立,從而得到c>b且c≥1,①令g(x)=f(x)﹣(x+c)2=(b﹣2c)x﹣c(c﹣1),從而得到結果;②不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立等價于f(c)﹣f(b)≤M(c2﹣b2)恒成立,分離參數可得 恒成立,轉化為求
的最大值即可.
【考點精析】利用利用導數研究函數的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】如圖,某住宅小區的平面圖呈圓心角為120°的扇形AOB,小區的兩個出入口設置在點A及點C處,且小區里有一條平行于BO的小路CD,已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義域為(0,+∞)的單調函數f(x),對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一個解,且x0∈(a,a+1)(a∈N*),則實數a=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創業,在一個開學季內,每售出盒該產品獲利潤
元;未售出的產品,每盒虧損
元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示,該同學為這個開學季購進了
盒該產品,以
(單位:盒,
)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.
(1)根據直方圖估計這個開學季內市場需求量的中位數;
(2)將表示為
的函數;
(3)根據直方圖估計利潤不少于元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近代統計學的發展起源于二十世紀初,它是在概率論的基礎上發展起來的,統計性質的工作可以追溯到遠古的“結繩記事”和《二十四史》中大量的關于我人口、錢糧、 水文、天文、地震等資料的記錄.近幾年,霧霾來襲,對某市該年11月份的天氣情況進行統計,結果如下:表一
日期 |
|
|
|
|
|
|
|
|
|
|
|
| |||
天氣 | 晴 | 霾 | 霾 | 陰 | 霾 | 霾 | 陰 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 霾 |
日期 |
|
|
|
|
|
| |||||||||
天氣 | 霾 | 霾 | 霾 | 陰 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.
下表是一個調査機構對比以上兩年11月份(該年不限行 天、次年限行
天共
天)的調查結果:
表二
不限行 | 限行 | 總計 | |
沒有霧霾 |
| ||
有霧霾 |
| ||
總計 |
(1)請由表一數據求 ,并求在該年11月份任取一天,估計該市是晴天的概率;
(2)請用統計學原理計算若沒有 的把握認為霧霾與限行有關系,則限行時有多少天沒有霧霾?
(由于不能使用計算器,所以表中數據使用時四舍五入取整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一個分段函數可利用函數 來表示,例如要表示一個分段函數
,可將函數g(x)表示為g(x)=xS(x﹣2)+(﹣x)S(2﹣x).現有一個函數f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函數f(x)在區間[0,4]上的最大值與最小值;
(2)若關于x的不等式f(x)≤kx對任意x∈[0,+∞)都成立,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com