【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統計了2019年1月份所有用戶的日平均步數,規定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:
運動達人 | 非運動達人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯表補充完整;
(ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?
(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.
附:
科目:高中數學 來源: 題型:
【題目】已知圓的半徑為2,
為平面上一點,
,
是圓上動點,線段
的垂直平分線
和直線
相交于點
.
(1)以中點
為原點,
所在直線為
軸,建立平面直角坐標系,求
點的軌跡方程;
(2)設(1)中點軌跡與直線
相交于
兩點,求三角形
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,且保費與上一年度車輛發生道路交通事故的情況相聯系.發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮 | |
上兩個年度未發生有責任道路交通事故 | 下浮 | |
上三個及以上年度未發生有責任道路交通事故 | 下浮 | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮 | |
上一個年度發生有責任道路交通死亡事故 | 上浮 |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元.且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,
,點M,N分別在棱FD,ED上.
(1)若平面MAC,設
,求
的值;
(2)若,平面AEN平面EDC所成的銳二面角為
,求BE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
傾斜角的余弦值為
,圓
與以線段
為直徑的圓關于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機生產企業為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價(單位:千元)與銷量
(單位:百件)的關系如下表所示:
單價 | 1 | 1.5 | 2 | 2.5 | 3 |
銷量 | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,
具有線性相關關系,求產品銷量
(百件)關于試銷單價
(千元)的線性回歸方程
;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應的產品銷量的估計值
,當銷售數據
對應的殘差滿足
時,則稱
為一個“好數據”,現從5個銷售數據中任取3個,求其中“好數據”的個數
的分布列和數學期望.
參考公式:,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com