精英家教網 > 高中數學 > 題目詳情

【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統計了20191月份所有用戶的日平均步數,規定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:

運動達人

非運動達人

總計

35

60

26

總計

100

1)(i)將列聯表補充完整;

ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?

2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.

附:

【答案】1)(i)填表見解析(ii)沒有的把握認為“日平均走步數和性別是否有關”(2)詳見解析

【解析】

1(i)由已給數據可完成列聯表,(ii)計算出后可得;

2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,的取值為,由二項分布概率公式計算出各概率得分布列,由期望公式計算期望.

解(1)(i

運動達人

非運動達人

總計

35

25

60

14

26

40

總計

49

51

100

ii)由列聯表得

所以沒有的把握認為“日平均走步數和性別是否有關”

2)由列聯表知從運動達人中抽取1個用戶為女用戶的概率為,.

易知

所以的分布列為

0

1

2

3

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調遞增區間;

(2)中,內角A,BC所對的邊分別為a,bc,若,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的半徑為2,為平面上一點,是圓上動點,線段的垂直平分線和直線相交于點

1)以中點為原點,所在直線為軸,建立平面直角坐標系,求點的軌跡方程;

2)設(1)中點軌跡與直線相交于兩點,求三角形的面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,且保費與上一年度車輛發生道路交通事故的情況相聯系.發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

上一個年度未發生有責任道路交通事故

下浮

上兩個年度未發生有責任道路交通事故

下浮

上三個及以上年度未發生有責任道路交通事故

下浮

上一個年度發生一次有責任不涉及死亡的道路交通事故

上一個年度發生兩次及兩次以上有責任道路交通事故

上浮

上一個年度發生有責任道路交通死亡事故

上浮

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:

類型

數量

10

5

5

20

15

5

1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000.且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:

①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點MN分別在棱FD,ED.

1)若平面MAC,設,求的值;

2)若,平面AEN平面EDC所成的銳二面角為,求BE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點F,過F的直線與拋物線交于A,B兩點,則的最小值是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,平面,的中點,,.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成銳二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,如圖,已知橢圓E的左、右頂點分別為,上、下頂點分別為、.設直線傾斜角的余弦值為,圓與以線段為直徑的圓關于直線對稱.

1)求橢圓E的離心率;

2)判斷直線與圓的位置關系,并說明理由;

3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機生產企業為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價(單位:千元)與銷量(單位:百件)的關系如下表所示:

單價(千元)

1

1.5

2

2.5

3

銷量(百件)

10

8

7

6

已知.

(Ⅰ)若變量,具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程;

(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應的產品銷量的估計值,當銷售數據對應的殘差滿足時,則稱為一個好數據,現從5個銷售數據中任取3個,求其中好數據的個數的分布列和數學期望.

參考公式:,.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视