【題目】已知圓的半徑為2,
為平面上一點,
,
是圓上動點,線段
的垂直平分線
和直線
相交于點
.
(1)以中點
為原點,
所在直線為
軸,建立平面直角坐標系,求
點的軌跡方程;
(2)設(1)中點軌跡與直線
相交于
兩點,求三角形
的面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為
,P是
上一動點,
,Q的軌跡為
.
(1)求曲線的極坐標方程,并化為直角坐標方程,
(2)若點,直線l的參數方程為
(t為參數),直線l與曲線
的交點為A,B,當
取最小值時,求直線l的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
已知函數是奇函數,
的定義域為
.當
時,
.(e為自然對數的底數).
(1)若函數在區間
上存在極值點,求實數
的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線的標準方程為,其中
為坐標原點,拋物線的焦點坐標為
,
為拋物線上任意一點(原點除外),直線
過焦點
交拋物線于
點,直線
過點
交拋物線于
點,連結
并延長交拋物線于
點.
(1)若弦的長度為8,求
的面積;
(2)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCP中,,
,
,D是AP的中點,E,G,F分別為PC、CB、PD的中點,將
沿CD折起,使得二面角
為直二面角.
(1)證明:平面EFG;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統計了2019年1月份所有用戶的日平均步數,規定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:
運動達人 | 非運動達人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯表補充完整;
(ii)據此列聯表判斷,能否有的把握認為“日平均走步數和性別是否有關”?
(2)將頻率視作概率,從該公司的所有人“運動達人”中任意抽取3個用戶,求抽取的用戶中女用戶人數的分布列及期望.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.由2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘顆數大約為( )(參考數據:
,
)
A.2B.4C.6D.8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com