【題目】已知函數,其中
為自然對數的底數.
(1)設函數(其中
為
的導函數),判斷
在
上的單調性;
(2)若函數在定義域內無零點,試確定正數
的取值范圍.
【答案】(1) 在
上單調遞增.(2)
.
【解析】
(1)先分析得到,即得函數
在
上的單調性;(2)先利用導數求出
,再對a分三種情況討論,討論每一種情況下的零點情況得解.
(1)因為,則
,
,
∴,
∴在
上單調遞增.
(2)由知
,
由(1)知在
上單調遞增,且
,可知當
時,
,
則有唯一零點,設此零點為
,
易知時,
,
單調遞增;
時,
,
單調遞減,
故,其中
.
令,
則,
易知在
上恒成立,所以
,
在
上單調遞增,且
.
①當時,
,由
在
上單調遞增知
,
則,由
在
上單調遞增,
,所以
,故
在
上有零點,不符合題意;
②當時,
,由
的單調性知
,則
,此時
有一個零點,不符合題意;
③當時,
,由
的單調性知
,則
,此時
沒有零點.
綜上所述,當無零點時,正數
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的焦點
的坐標為
,
的坐標為
,且經過點
,
軸.
(1)求橢圓的方程;
(2)設過的直線
與橢圓
交于
兩不同點,在橢圓
上是否存在一點
,使四邊形
為平行四邊形?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點F到左頂點的距離為3.
(1)求橢圓C的方程;
(2)設O是坐標原點,過點F的直線與橢圓C交于A,B兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《算法統宗》全稱《新編直指算法統宗》,是屮國古代數學名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】傳染病的流行必須具備的三個基本環節是:傳染源、傳播途徑和人群易感性.三個環節必須同時存在,方能構成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應該佩戴口罩.某地區已經出現了新冠狀病毒的感染病人,為了掌握該地區居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認為是否會佩戴口罩出行的行為與年齡有關?
(2)用樣本估計總體,若從該地區出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,
表示被清華、北大等名校錄取的學生人數)
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點圖發現與
之間具有線性相關關系,求
關于
的線性回歸方程;(保留兩位有效數字)
(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該?既嗣5娜藬;
(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.
參考公式:,
參考數據:,
,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com