【題目】如圖,在三角形中,
,平面
與半圓弧
所在的平面垂直,點
為半圓弧上異于
的動點,
為
的中點.
(1)求證:;
(2)求三棱錐體積的最大值.
科目:高中數學 來源: 題型:
【題目】談祥柏先生是我國著名的數學科普作家,他寫的《數學百草園》、《好玩的數學》、《故事中的數學》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數學》中談老的一篇文章《五分鐘內挑出埃及分數》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(稱為埃及分數).如用兩個埃及分數與
的和表示
等.從
這100個埃及分數中挑出不同的3個,使得它們的和為1,這三個分數是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計
的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對
,再統計其中x,y能與1構成鈍角三角形三邊的數對
的個數m,最后根據統計個數m估計
的值.如果統計結果是
,那么可以估計
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知傾斜角為
的直線
過點
,以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.曲線
的極坐標方程為
,直線
與曲線
分別交于
、
兩點.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)若,求直線
的斜率
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一款擊鼓小游戲的規則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現一次音樂,要么不出現音樂;每盤游戲擊鼓三次后,出現三次音樂獲得150分,出現兩次音樂獲得100分,出現一次音樂獲得50分,沒有出現音樂則獲得-300分.設每次擊鼓出現音樂的概率為,且各次擊鼓出現音樂相互獨立.
(1)若一盤游戲中僅出現一次音樂的概率為,求
的最大值點
;
(2)以(1)中確定的作為
的值,玩3盤游戲,出現音樂的盤數為隨機變量
,求每盤游戲出現音樂的概率
,及隨機變量
的期望
;
(3)玩過這款游戲的許多人都發現,若干盤游戲后,與最初的分數相比,分數沒有增加反而減少了.請運用概率統計的相關知識分析分數減少的原因.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:=1(a>0,b>0)的左右焦點為F1,F2過點F1的直線l與雙曲線C的左支交于AB兩點,△BF1F2的面積是△AF1F2面積的三倍,∠F1AF2=90°,則雙曲線C的離心率為( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科站技術員為了解某品種樹苗的生長情況,在該批樹苗中隨機抽取一個容量為100的樣本,測量樹苗高度(單位:).經統計,高度在區間
內,將其按
,
,
,
,
,
分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于
的樹苗為優質樹苗.
附:
,其中
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這100棵樹苗來自于甲、乙兩個地區,部分數據如下列聯表所示,將列聯表補充完整,并根據列聯表判斷是否有
%的把握認為優質樹苗與地區有關?
甲地區 | 乙地區 | 合計 | |
優質樹苗 | 5 | ||
非優質樹苗 | 25 | ||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,下述四個結論:
①是偶函數;
②的最小正周期為
;
③的最小值為0;
④在
上有3個零點
其中所有正確結論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有橡皮泥制作的底面半徑為5,高為9的圓錐和底面半徑為,高為8的圓柱各一個.若將它們重新制作成總體積與各自的高均保持不變,但底面半徑相同的新的圓錐與圓柱各一個,則新的底面半徑為_________;若新圓錐的內接正三棱柱表面積取到最大值,則此正三棱柱的底面邊長為_________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com