精英家教網 > 高中數學 > 題目詳情

【題目】下列四個結論:
①若α、β為第一象限角,且α>β,則sinα>sinβ
②函數y=|sinx|與y=|tanx|的最小正周期相同
③函數f(x)=sin(x+ )在[﹣ , ]上是增函數;
④若函數f(x)=asinx﹣bcosx的圖象的一條對稱軸為直線x= ,則a+b=0.
其中正確結論的序號是

【答案】②④
【解析】解:①若α、β為第一象限角,且α>β,則sinα>sinβ不成立,不如α=390°,β=30°,滿足α>β,但sinα=sinβ,故①錯誤,
②函數y=|sinx|的周期為π,y=|tanx|的最小正周期為π,兩個函數的周期相同,故②正確,
③當x∈[﹣ , ],則x+ ∈[﹣ , ],此時函數f(x)=sin(x+ )在[﹣ , ]上不單調性,故③錯誤,
④f( +x)=f( ﹣x) 對任意x∈R恒成立,即可得2acos sinx=﹣2bsin sinx 對任意x∈R恒成立,
即(a+b)sinx=0 對任意x∈R恒成立,所以a+b=0,故④正確,
所以答案是:②④.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列命題:
①函數y=cos(2x﹣ )圖象的一條對稱軸是x=
②在同一坐標系中,函數y=sinx與y=lgx的交點個數為3個;
③將函數y=sin(2x+ )的圖象向右平移 個單位長度可得到函數y=sin2x的圖象;
④存在實數x,使得等式sinx+cosx= 成立;
其中正確的命題為(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】樣本a1 , a2 , a3 , …,a10的平均數為 ,樣本b1 , b2 , b3 , …,b10的平均數為 ,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數為( )
A.+
B. +
C.2( +
D. +

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin( x+φ),x∈R,A>0,0<φ< .y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點和最低點,點P的坐標為(1,A).點R的坐標為(1,0),∠PRQ=

(1)求f(x)的最小正周期以及解析式.
(2)用五點法畫出f(x)在x∈[﹣ ]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】咖啡館配制兩種飲料,甲種飲料分別用奶粉、咖啡、糖。乙種飲料分別用奶粉、咖啡、糖。已知每天使用原料限額為奶粉、咖啡、糖。如果甲種飲料每杯能獲利元,乙種飲料每杯能獲利元。每天在原料的使用限額內飲料能全部售出,每天應配制兩種飲料各多少杯能獲利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次抽樣調查中測得樣本的6組數據,得到一個變量關于的回歸方程模型,其對應的數值如下表:

2

3

4

5

6

7

(1)請用相關系數加以說明之間存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關系數公式為:.

參考數據:

,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列五個命題:①“若,則”是假命題;②從正方體的面對角線中任取兩條作為一對,其中所成角為的有48對;③“ ”是方程表示焦點在軸上的雙曲線的充分不必要條件;④點是曲線, )上的動點,且滿足,則的取值范圍是;⑤若隨機變量服從正態分布,且,則.其中正確命題的序號是__________(請把正確命題的序號填在橫線上).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的單調區間與極值;

(2)當時, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视