精英家教網 > 高中數學 > 題目詳情

【題目】已知函數則使得成立的x的取值范圍是(

A.-1,3B.

C.D.

【答案】D

【解析】

先求出2x,再由fx)為偶函數,且在(0,+∞)上單調遞增,故f2x)>fx+3)等價于|2x||x+3|,解之即可求出使得f2x)>fx+3)成立的x的取值范圍.

解:∵函數fx)=lnex+ex+x2,

2x,

x0時,f′(x)=0fx)取最小值,

x0時,f′(x)>0fx)單調遞增,

x0時,f′(x)<0,fx)單調遞減,

fx)=lnex+ex+x2是偶函數,且在(0,+∞)上單調遞增,

f2x)>fx+3)等價于|2x||x+3|,

整理,得x22x30

解得x3x<﹣1,

∴使得f2x)>fx+3)成立的x的取值范圍是(﹣∞,﹣1)∪(3,+∞).

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出的值分別為( )

(參考數據:

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】汽車急剎車的停車距離與諸多因素有關,其中最為關鍵的兩個因素是駕駛員的反應時間和汽車行駛的速度.d表示停車距離,表示反應距離,表示制動距離,.下圖是根據美國公路局公布的試驗數據制作的停車距離示意圖,對應的汽車行駛的速度與停車距離的表格如下圖所示

序號

1)根據表格中的數據,建立停車距離與汽車速度的函數模型.可選擇模型一:或模型二:(其中v為汽車速度,a,b為待定系數)進行擬合,請根據序號2和序號7兩組數據分別求出兩個函數模型的解析式;

2)通過計算時的停車距離,分析選擇哪一個函數模型的擬合效果更好.

(參考數據:;;.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓C: (a>b>0)的左、右焦點分別為F1、F2,若橢圓C經過點(0,),離心率為,直線l過點F2與橢圓C交于A、B兩點.

(1)求橢圓C的方程;

(2)若點NF1AF2的內心(三角形三條內角平分線的交點),求F1NF2F1AF2面積的比值;

(3)設點A,F2,B在直線x=4上的射影依次為點D,G, E.連結AE,BD,試問當直線l的傾斜角變化時,直線AEBD是否相交于定點T?若是,請求出定點T的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市2011年至2017年新開樓盤的平均銷售價格(單位:千元/平方米)的統計數據如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號

1

2

3

4

5

6

7

銷售價格

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關于x的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預測該市2019年新開樓盤的平均銷售價格。

附:參考公式: ,,其中為樣本平均值。

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數方程為為參數),直線與曲線分別交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分10分)一位網民在網上光顧某淘寶小店,經過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設該網民是否購買這五種商品相互獨立.

1)求該網民至少購買4種商品的概率;

2)用隨機變量表示該網民購買商品的種數,求的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,若存在區間,使得上的值域為,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】偶函數定義域為,其導函數是,當時,有,則關于的不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视