【題目】設,
是橢圓
:
的兩個焦點,過
,
分別作直線
,
,且
,若
與橢圓
交于
,
兩點,
與橢圓
交于
,
兩點(點
,
在
軸上方),則四邊形
面積的最大值為__________.
科目:高中數學 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數,
表示每天使用掃碼支付的人次(單位:十人次),統計數據如表1所示:
表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據以上數據,繪制了散點圖.
(1)根據散點圖判斷,在推廣期內,與
(
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于活動推出天數
的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(1)的判斷結果及表1中的數據,建立關于
的回歸方程,并預測活動推出第8天使用掃碼支付的人次.
(3)推廣期結束后,為更好的服務乘客,車隊隨機調查了100人次的乘車支付方式,得到如下結果:
表2
支付方式 | 現金 | 乘車卡 | 掃碼 |
人次 | 10 | 60 | 30 |
已知該線路公交車票價2元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受8折優惠,掃碼支付的乘客隨機優惠,根據調査結果發現:使用掃碼支付的乘客中有5名乘客享受7折優惠,有10名乘客享受8折優惠,有15名乘客享受9折優惠.預計該車隊每輛車每個月有1萬人次乘車,根據所給數據,以事件發生的頻率作為相應事件發生的概率,在不考慮其他因素的條件下,按照上述收費標準,試估計該車隊一輛車一年的總收入.
參考數據:
62.14 | 1.54 | 2535 | 50.12 | 3.47 |
其中.
參考公式:
對于一組數據,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某連鎖超市旗艦店在元旦當天推出一個購物滿百元抽獎活動,凡是一次性購物滿百元者可以從抽獎箱中一次性任意摸出2個小球(抽獎箱內共有5個小球,每個小球大小形狀完全相同,這5個小球上分別標有1,2,3,4,5 這5個數字).
(1)列出摸出的2個小球的所有可能的結果.
(2)已知該超市活動規定:摸出的2個小球都是偶數為一等獎;摸出的2個小球都是奇數為二等獎.請分別求獲得一等獎的概率與獲得二等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三棱錐的底面是正三角形,側棱長均相等,
是棱
上的點(不含端點),記直線
與直線
所成角為
,直線
與平面
所成角為
,二面角
的平面角為
,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與橢圓
交于不同的兩點
,
.
(1)若線段的中點為
,求直線
的方程;
(2)若的斜率為
,且
過橢圓
的左焦點
,
的垂直平分線與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中醫藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗
次;(2)混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為
.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數為
;采用混合檢驗的方式,樣本簡要檢驗的總次數為
;
(。┤,試運用概率與統計的知識,求
關于
的函數關系
,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數的期望比逐份檢驗的總次數的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年春季受新冠肺炎疫情的影響,利用網絡軟件辦公與學習成為了一種新的生活方式,網上辦公軟件的開發與使用成為了一個熱門話題.為了解“釘釘”軟件的使用情況,“釘釘”公司借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到下表(單位:人):
經常使用 | 偶爾或不用 | 合計 | |
35歲及以下 | 70 | 30 | 100 |
35歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為“釘釘”軟件的使用情況與年齡有關?
(2)現從所抽取的35歲以上的網友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用“釘釘”軟件的概率.
參考公式:,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天然氣已經進入了千家萬戶,某市政府為了對天然氣的使用進行科學管理,節約氣資源,計劃確定一個家庭年用量的標準.為此,對全市家庭日常用氣的情況進行抽樣調查,獲得了部分家庭某年的用氣量(單位:立方米).將統計結果繪制成下面的頻率分布直方圖(如圖所示).由于操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.若以各組區間中點值代表該組的取值,則估計全市家庭年均用氣量約為( )
A.6.5立方米B.5立方米C.4.5立方米D.2.5立方米
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com