精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
等差數列中,,
(Ⅰ)求數列的通項公式;
(Ⅱ)若,求數列的前項和

(1)(2)

解析試題分析:解:(Ⅰ)設數列的公差為,由………………………… 2分
解得                              ………………………… 4分
所以.   ………………………… 6分
(Ⅱ)因為,所以,,…………………… 9分
所以.…… 12分
考點:等差數列,數列求和
點評:屬于基礎題型,要對于等差數列的知識熟練的根據基本量求解,并能裂項發求和,考查運算求解能力,考查函數與方程思想等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某市去年11份曾發生流感,據統計,11月1日該市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少30人,到11月30日止,該市在這30日內感染該病毒的患者總共8670人,問11月幾日,該市感染此病毒的新患者人數最多?并求這一天的新患者人數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)已知數列的首項為,其前項和為,且對任意正整數有:、、成等差數列.
(1)求證:數列成等比數列;
(2)求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知 是等差數列,是公比為的等比數列,,記為數列的前項和,
(1)若是大于的正整數,求證:
(2)若是某一正整數,求證:是整數,且數列中每一項都是數列中的項;
(3)是否存在這樣的正數,使等比數列中有三項成等差數列?若存在,寫出一個的值,并加以說明;若不存在,請說明理由;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
已知是等差數列,其中[來]
(1)求的通項; 
(2)數列從哪一項開始小于0;
(3)求值。]

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是公差不為零的等差數列,,且成等比數列.
(1)求數列的通項;      
(2)記,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列,的前項和,且
(1)求的通項公式;
(2)設,的前n項和,是否存在正數,對任意正整數,不等式恒成立?若存在,求的取值范圍;若不存在,說明理由.
(3)判斷方程是否有解,說明理由;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)在等差數列中,,前項和為,等比數列各項均為正數,,且,的公比
(1)求;(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
是等差數列,是各項都為正數的等比數列,且,.
(1)求,的通項公式;(2)求數列的前項和.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视