【題目】已知定義在 上的函數
滿足
,且
是偶函數,當
時,
.令
,若在區間
內,函數
有4個不相等實根,則實數
的取值范圍是( )
A.
B.
C.
D.
【答案】C
【解析】由題意知, 是定義在R上的周期為2的偶函數,
令 ,作其與y=f(x)的圖象如下,
函數 有4個不相等實根,等價于
與y=f(x)有4個交點,
所以 ,解得
.
所以答案是:C.
【考點精析】本題主要考查了函數的零點與方程根的關系和函數的零點的相關知識點,需要掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點;函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系 中,曲線
的參數方程為
(
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線 ,
的直角坐標方程;
(2)設 為曲線
上的點,
為曲線
上的點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若關于x的不等式4ax-1<3x-4(a>0,且a≠1)對于任意的x>2恒成立,則a的取值范圍為( )
A.
B.
C.[2,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
短軸兩個端點為
且四邊形
是邊長為
的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長軸的左、右端點,動點
滿足
,連接
,交橢圓于點
.證明:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (
為常數)與
軸有唯一的公關點
.
(Ⅰ)求函數 的單調區間;
(Ⅱ)曲線 在點
處的切線斜率為
,若存在不相等的正實數
,滿足
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為 元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題: 求一輛普通6座以下私家車(車險已滿三年)在下一年續保時保費高于基本保費的頻率;
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元.且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com