精英家教網 > 高中數學 > 題目詳情

【題目】某校為調查高一、高二學生周日在家學習用時情況,隨機抽取了高一、高二各人,對他們的學習時間進行了統計,分別得到了高一學生學習時間(單位:小時)的頻數分布表和高二學生學習時間的頻率分布直方圖.

高一學生學習時間的頻數分布表(學習時間均在區間內):

學習時間

頻數

3

1

8

4

2

2

高二學生學習時間的頻率分布直方圖:

(1)求高二學生學習時間的頻率分布直方圖中的,并根據此頻率分布直方圖估計該校高二學生學習時間的中位數;

(2)利用分層抽樣的方法,從高一學生學習時間在的兩組里隨機抽取,再從這人中隨機抽取,求學習時間在這一組中至少有人被抽中的概率.

【答案】(1),3.8;(2)

【解析】分析:(1)根據評率分布直方圖的特征各直方圖的面積之和為1可得a值;(2)根據分層抽樣定義可得:從高一學生學習時間在中抽取人,從高一學生學習時間在中抽取人,

然后根據古典概型計算公式可得結論.

詳解:

(1)由圖可知,學生學習時間在區間內的頻率為,

內的頻率為,所以

設中位數為,則,解得

即該校高二學生學習時間的中位數為.

(2)根據分層抽樣,從高一學生學習時間在中抽取人,從高一學生學習時間在中抽取人,從這人中隨機抽取人共有種情況,其中學習時間在這一組中沒人被抽中的有種情況,設在這一組中至少有人被抽中的事件為

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直四棱柱 的所有棱長均為2, 中點.

(Ⅰ)求證: 平面 ;
(Ⅱ)若 ,求平面 與平面 所成銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2015年一交警統計了某路段過往車輛的車速大小與發生的交通事故次數,得到如下表所示的數據:

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;

(3)試根據(2)求出的線性回歸方程,預測在2016年該路段路況及相關安全設施等不變的情況下,車速達到110時,可能發生的交通事故次數.

(附:,,其中為樣本平均值)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的圖象與y=f(x﹣ )的圖象重合,記ω的最大值為ω0 , 函數g(x)=cos(ω0x﹣ )的單調遞增區間為(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,若對任意都有為常數)成立,則稱為“等差比數列”,下面對“等差比數列” 的判斷:①不可能為;②等差數列一定是等差比數列; ③等比數列一定是等差比數列 ;④通項公式為(其中,且,)的數列一定是等差比數列,其中正確的判斷是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項均為正數的數列{an}的前n項和為Sn , 且Sn滿足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),則S1+S2+…+S2017=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點P(x,y)(其中y )到x軸的距離比它到點F(0,1)的距離少1.
(1)求動點P的軌跡方程;
(2)若直線l:x-y+1=0與動點P的軌跡交于A、B兩點,求△OAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點 為坐標原點, 是橢圓 上的兩個動點,滿足直線 與直線 關于直線 對稱.
(1)證明直線 的斜率為定值,并求出這個定值;
(2)求 的面積最大時直線 的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓 的圓心在直線 上,且圓 經過點 .
(1)求圓的標準方程;
(2)直線 過點 且與圓 相交,所得弦長為4,求直線 的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视