設橢圓C:+
=1(a>b>0)過點(0,4),離心率為
.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為
,若不過點A的動直線l與橢圓C相交于P,Q兩點,且
·
=0.
(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C:的離心率為
,左頂點為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在圓上,求m的值和線段AB的長。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知命題:方程
所表示的曲線為焦點在
軸上的橢圓;命題
:實數
滿足不等式
.
(1)若命題為真,求實數的取值范圍;
(2)若命題是命題
的充分不必要條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.
(1)求橢圓和圓的標準方程;
(2)設直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點P與平面上兩定點連線的斜率的積為定值
.
(1)試求動點P的軌跡方程C.
(2)設直線與曲線C交于M、N兩點,當|MN|=
時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,直線
與圓
相切,且交橢圓
于
兩點,c是橢圓的半焦距,
(1)求m的值;
(2)O為坐標原點,若,求橢圓
的方程;
(3)在(2)的條件下,設橢圓的左右頂點分別為A,B,動點
,直線
與直線
分別交于M,N兩點,求線段MN的長度的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,左、右焦點分別為
,點G在橢圓C上,且
,
的面積為3.
(1)求橢圓C的方程:
(2)設橢圓的左、右頂點為A,B,過的直線
與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于
軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com