已知命題:方程
所表示的曲線為焦點在
軸上的橢圓;命題
:實數
滿足不等式
.
(1)若命題為真,求實數的取值范圍;
(2)若命題是命題
的充分不必要條件,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知點在橢圓
:
上,以
為圓心的圓與
軸相切于橢圓的右焦點
,且
,其中
為坐標原點.
(1)求橢圓的方程;
(2)已知點,設
是橢圓
上的一點,過
、
兩點的直線
交
軸于點
,若
, 求直線
的方程;
(3)作直線與橢圓
:
交于不同的兩點
,
,其中
點的坐標為
,若點
是線段
垂直平分線上一點,且滿足
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(x0,y0)(x0≠±a)是雙曲線E:-
=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之積為
.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足=λ
+
,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A、B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,橢圓C的中心為原點,焦點F1,F2在x軸上,離心率為.過F1的直線交橢圓C于A,B兩點,且△ABF2的周長為8.過定點M(0,3)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(1)求橢圓C的方程;
(2)設直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形為菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的左焦點為
,右焦點為
,過
的直線交橢圓于
兩點,
的周長為8,且
面積最大時,
為正三角形.
(1)求橢圓的方程;
(2)設動直線與橢圓
有且只有一個公共點
,且與直線
相交于點
,證明:點
在以
為直徑的圓上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓M:=1(a>
)的右焦點為F1,直線l:x=
與x軸交于點A,若
=2
(其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com