【題目】已知.
(I)討論的單調性;
(II)當有最大值,且最大值大于
時,求a的取值范圍.
【答案】(Ⅰ)詳見解析;(Ⅱ)
【解析】試題分析:
(1)由題已知函數的解析式(注意定義域),可運用導數求出函數的單調區間。即: 為函數的增區間,反之為減區間。由導函數中含有字母參數,需分類討論;
(2)由題給出了函數的最大值的范圍大于,再結合(1)已知函數的單調區間,可對應單調性,表示出函數的最大值,從而建立不等式lna+a-1<0,需構造函數利用單調性解出不等式的解,而求出
的取值范圍。
試題解析:
(Ⅰ)f(x)=lnx+a(1﹣x)的定義域為(0,+∞),∴f′(x)=﹣a=
,
若a≤0,則f′(x)>0,∴函數f(x)在(0,+∞)上單調遞增,
若a>0,則當x∈(0,)時,f′(x)>0,
當x∈(,+∞)時,f′(x)<0,所以f(x)在(0,
)上單調遞增,在(
,+∞)上單調遞減,
(Ⅱ)由(Ⅰ)知,當a≤0時,f(x)在(0,+∞)上無最大值;
當a>0時,f(x)在x=取得最大值,最大值為f(
)=﹣lna+a-1,
∵f()>2a﹣2,∴lna+a-1<0,
令g(a)=lna+a-1,∵g(a)在(0,+∞)單調遞增,g(1)=0,
∴當0<a<1時,g(a)<0,當a>1時,g(a)>0,∴a的取值范圍為(0,1).
科目:高中數學 來源: 題型:
【題目】首屆世界低碳經濟大會在南昌召開,本屆大會以“節能減排,綠色生態”為主題.某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數關系可近似地表示為 ,且每處理一噸二氧化碳得到可利用的化工產品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(x2+ax﹣a﹣1),給出下列命題:
①函數f(x)有最小值;
②當a=0時,函數f(x)的值域為R;
③若函數f(x)在區間(﹣∞,2]上單調遞減,則實數a的取值范圍是a≤﹣4.
其中正確的命題是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若以曲線上任意一點
為切點作切線
,曲線上總存在異于
的點
,以點
為切點作切線
,且
,則稱曲線
具有“可平行性”,現有下列命題:
①函數的圖象具有“可平行性”;
②定義在的奇函數
的圖象都具有“可平行性”;
③三次函數具有“可平行性”,且對應的兩切點
,
的橫坐標滿足
;
④要使得分段函數的圖象具有“可平行性”,當且僅當
.
其中的真命題個數有()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(
為自然對數的底數),
,
.
(1)若是
的極值點,且直線
分別與函數
和
的圖象交于
,求
兩點間的最短距離;
(2)若時,函數
的圖象恒在
的圖象上方,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com