【題目】已知橢圓:
的離心率為
,直線
:
與以原點為圓心,以橢圓
的短半軸長為半徑的圓相切.
為左頂點,過點
的直線交橢圓
于
,
兩點,直線
,
分別交直線
于
,
兩點.
(1)求橢圓的方程;
(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知為橢圓
上的三個點,
為坐標原點.
(1)若所在的直線方程為
,求
的長;
(2)設為線段
上一點,且
,當
中點恰為點
時,判斷
的面積是否為常數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鄉鎮為了發展旅游行業,決定加強宣傳,據統計,廣告支出費與旅游收入
(單位:萬元)之間有如下表對應數據:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求旅游收入對廣告支出費
的線性回歸方程
,若廣告支出費
萬元,預測旅游收入;
(2)在已有的五組數據中任意抽取兩組,根據(1)中的線性回歸方程,求至少有一組數據,其預測值與實際值之差的絕對值不超過的概率.(參考公式:
,
,其中
為樣本平均值,參考數據:
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查某大學學生在周日上網的時間,隨機對名男生和
名女生進行了不記名的問卷調查,得到了如下的統計結果:
表1:男生上網時間與頻數分布表:
上網時間(分鐘) | |||||
人數 | 5 | 25 | 30 | 25 | 15 |
表2:女生上網時間與頻數分布表:
上網時間(分鐘) | |||||
人數 | 10 | 20 | 40 | 20 | 10 |
(1)若該大學共有女生人,試估計其中上網時間不少于
分鐘的人數;
(2)完成表3的列聯表,并回答能否有
的把握認為“學生周日上網時間與性別有關”?
(3)從表3的男生中“上網時間少于分鐘”和“上網時間不少于
分鐘”的人數中用分層抽樣的方法抽取一個容量為
的樣本,再從中任取兩人,求至少有一人上網時間超過
分鐘的概率.表3:
上網時間少于60分鐘 | 上網時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:,其中
,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結論正確的是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com