【題目】(2015秋?谛<壠谥校┲本l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.
科目:高中數學 來源: 題型:
【題目】已知集合,對于
,
,定義A與B的差為
;A與B之間的距離為
.
(I)若,試寫出所有可能的A,B;
(II),證明:
(i);
(ii)三個數中至少有一個是偶數;
(III)設,
中有m(
,且為奇數)個元素,記P中所有兩元素間距離的平均值為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是函數
定義域內的一個子集,若存在
,使得
成立,則稱
是
的一個“不動點”,也稱
在區間
上存在不動點.
設函數,
.
(1)若,求函數
的不動點;
(2)若函數在
上不存在不動點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為
則該三棱錐外接球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知橢圓:(
)的離心率為
,右準線方程是直線l:
,點P為直線l上的一個動點,過點P作橢圓的兩條切線
,切點分別為AB(點A在x軸上方,點B在x軸下方).
(1)求橢圓的標準方程;
(2)①求證:分別以為直徑的兩圓都恒過定點C;
②若,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,空間幾何體中,四邊形
是梯形,四邊形
是矩形,且平面
平面
,
,
,
是線段
上的動點.
(1)求證: ;
(2)試確定點的位置,使
平面
,并說明理由;
(3)在(2)的條件下,求空間幾何體的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線與兩坐標軸的交點都在圓
上,圓
與
軸正半軸、
軸正半軸分別交于
,
兩點.
(Ⅰ)求圓的方程;
(Ⅱ)過點作直線
與圓
交于
,
兩點,是否存在
使得
與
共線,如果存在求直線
的方程,若不存在請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com