精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,已知底面為菱形,,,為對角線的交點,底面

(1)求異面直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1);(2)

【解析】

根據底面為菱形得,利用線面垂直的性質可得,,從而以為坐標原點建立空間直角坐標系;(1)利用異面直線所成角的空間向量求法可求得結果;(2)分別得到兩個平面的法向量,根據二面角的空間向量求法可求得結果.

底面為菱形

底面,底面 ,

為坐標原點可建立如圖所示的空間直角坐標系

,,,

(1)設為異面直線所成的角,又,

異面直線所成的角的余弦值為:

(2)平面 平面的法向量取

設平面的法向量為,又,

,令,則,

為兩個平面所成的銳二面角的平面角,則:

平面與平面所成銳二面角的余弦值為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,,為橢圓上的動點,,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有A,B兩個投資項目,投資兩項目所獲得利潤分別是(萬元),它們與投入資金(萬元)的關系依次是:其中平方根成正比,且當4(萬元)時1(萬元),又成正比,當4(萬元)時也是1(萬元);某人甲有3萬元資金投資.

)分別求出,的函數關系式;

)請幫甲設計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于不同的兩點、,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南北朝時間著名數學家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,運用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓 軸旋轉一周后得一橄欖狀的幾何體,類比上述方法,運用祖暅原理可求得其體積等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論中:

定義在R上的函數f(x)在區間(-∞,0]上是增函數,在區間[0,+∞)上也是增函數,則函數f(x)R上是增函數;f(2)=f(-2),則函數f(x)不是奇函數;函數y=x-0.5(0,1)上的減函數;對應法則和值域相同的函數的定義域也相同;x0是二次函數y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結論的序號:_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當,時,求滿足的值;

(2)若函數是定義在上的奇函數.

①存在,使得不等式有解,求實數的取值范圍;

②若函數滿足,若對任意,不等式恒成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學習小組在暑期社會實踐活動中,通過對某商店一種商品銷售情況的調查發現:該商品在過去的一個月內(以30天計)的日銷售價格(元)與時間(天)的函數關系近似滿足為正常數).該商品的日銷售量(個)與時間(天)部分數據如下表所示:

(天)

10

20

25

30

(個)

110

120

125

120

已知第10天該商品的日銷售收入為121.

I)求的值;

II)給出以下二種函數模型:

,②,

請你根據上表中的數據,從中選擇你認為最合適的一種函數來描述該商品的日銷售量與時間的關系,并求出該函數的解析式;

III)求該商品的日銷售收入(元)的最小值.

(函數,在區間上單調遞減,在區間上單調遞增.性質直接應用.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视