精英家教網 > 高中數學 > 題目詳情

如圖,現要在邊長為的正方形內建一個交通“環島”.正方形的四個頂點為圓心在四個角分別建半徑為不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.

(1)求的取值范圍;(運算中
(2)若中間草地的造價為,四個花壇的造價為,其余區域的造價為,當取何值時,可使“環島”的整體造價最低?

(1)  ,(2) .

解析試題分析:(1)解決應用題問題首先要解決閱讀問題,具體說就是要會用數學式子正確表示數量關系,本題根據半徑、島口寬、路寬限制條件列方程組,即可得的取值范圍;其難點在路寬最小值的確定,觀察圖形易知路寬最小值應在正方形對角線連線上取得,(2)本題解題思路清晰,就是根據草地、花壇、其余區域的造價列函數關系式,再由導數求最值.難點在所列函數解析式是四次,其導數為三次,在判定區間導數符號時需細心確定,要解決這一難點,需充分利用因式分解簡化式子結構.
試題解析:(1)由題意得,            4分
解得.         7分
(2)記“環島”的整體造價為元,則由題意得

,         10分
,則
,解得,               12分
列表如下:


9
(9,10)
10
(10,15)
15

 

0

0

 

極小值

 
所以當取最小值.
答:當時,可使“環島”的整體造價最低.            14分
考點:利用導數求最值,解不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln x+2x-6.
(1)證明:函數f(x)有且只有一個零點;
(2)求該零點所在的一個區間,使這個區間的長度不超過

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, 在處取得極小值2.
(1)求函數的解析式;
(2)求函數的極值;
(3)設函數, 若對于任意,總存在, 使得, 求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數;
(Ⅰ)求證:函數上單調遞增;
(Ⅱ)設,若直線PQ∥x軸,求P,Q兩點間的最短距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為函數圖象上一點,O為坐標原點,記直線的斜率
(Ⅰ)若函數在區間上存在極值,求實數m的取值范圍;
(Ⅱ)設,若對任意恒有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a,b為常數,a¹0,函數
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區間[1,2]上是增函數;
②若,,且在區間[1,2]上是增函數,求由所有點形成的平面區域的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若,求在點處的切線方程;
(Ⅱ)求函數的極值點;
(Ⅲ)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調區間;
(Ⅲ)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,如果函數恰有兩個不同的極值點,且.
(Ⅰ)證明:;(Ⅱ)求的最小值,并指出此時的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视