【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數與餐廳所需原材料數量的關系,查閱了最近5次交易會的參會人數x(萬人)與餐廳所用原材料數量t(袋),得到如下數據:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數x(萬人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請根據所給五組數據,求出t關于x的線性回歸方程 ;
(Ⅱ)已知購買原材料的費用C(元)與數量t(袋)的關系為 投入使用的每袋原材料相應的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現恰好用完,據悉本次交易會大約有14萬人參加,根據(Ⅰ)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入﹣原材料費用).
(參考公式: =
,
)
【答案】解:(Ⅰ)由數據,求得 ,
,
10×25+12×29=1273,
102+122=510,
=
,
,
∴t關于x的線性回歸方程為 .
(Ⅱ)由(Ⅰ)中求出的線性回歸方程,當x=14時, ,
即預計需要原材料34.2袋,
∵
∴,若t<35,利潤L=600t﹣(300t+20)=300t﹣20,
當t=34時,利潤Lmax=300×34﹣20=10180元;
若t≥35,利潤L=600×34.2﹣290t=20520﹣290t,
當t=35時,利潤Lmax=20520﹣290×35=10370元;
綜上所述,該餐廳應購買35袋原材料,才能獲得最大利潤,最大利潤是10370元
【解析】(1)由題意求出 ,
,
,
,代入公式求值,從而得到回歸直線方程;(2)由(Ⅰ)中求出的線性回歸方程,當x=14時,
,根據分段函數C討論其利潤.
科目:高中數學 來源: 題型:
【題目】設公差不為0的等差數列{an}的前n項和為Sn , 若a2 , a5 , a11成等比數列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)經過點(1,
),離心率為
,點A為橢圓C的右頂點,直線l與橢圓相交于不同于點A的兩個點P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)當 ⊥
=0時,求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角后的圖形如圖所示,若E為線段BC的中點,則直線AE與平面ABD所成角的余弦為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 |﹣
|,其中﹣3≤a≤1.
(Ⅰ)當a=1時,解不等式f(x)≥1;
(Ⅱ)對于任意α∈[﹣3,1],不等式f(x)≥m的解集為空集,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點,D是B1C1的中點.
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求直線A1B和平面BB1C1C所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣4x+a+3:
(1)若函數y=f(x)在[﹣1,1]上存在零點,求實數a的取值范圍;
(2)設函數g(x)=x+b,當a=3時,若對任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實數b的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com