【題目】將正整數12分解成兩個正整數的乘積有,
,
三種,其中
是這三種分解中,兩數差的絕對值最小的,我們稱
為12的最佳分解.當
是正整數
的最佳分解時,我們規定函數
,例如
.關于函數
有下列敘述:①
,②
,③
,④
.其中正確的序號為 (填入所有正確的序號).
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,點
在橢圓
上.
()求橢圓
的標準方程.
()是否存在斜率為
的直線
,使得當直線
與橢圓
有兩個不同交點
,
時,能在直線
上找到一點
,在橢圓
上找到一點
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A(2,4)
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,
且滿足:
(1)證明:是等比數列,并求數列
的通項公式.
(2)設,若數列
是等差數列,求實數
的值;
(3)在(2)的條件下,設 記數列
的前
項和為
,若對任意的
存在實數
,使得
,求實數
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為自然對數的底數).
(1)求函數的極值;
(2)問:是否存在實數,使得
有兩個相異零點?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為的奇函數
,滿足
,下面四個關于函數
的說法:①存在實數
,使關于
的方程
有
個不相等的實數根;②當
時,恒有
;③若當
時,
的最小值為
,則
;④若關于
的方程
和
的所有實數根之和為零,則
.其中說法正確的有______.(將所有正確說法的標號填在橫線上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某數學小組到進行社會實踐調查,了解到某公司為了實現1000萬元利潤目標,準備制定激勵銷售人員的獎勵方案:在銷售利潤超過10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數不超過5萬元,同時獎金不超過利潤的25%.同學們利用函數知識,設計了如下的函數模型,其中符合公司要求的是(參考數據:,
)( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com