精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)討論fx)的單調性;

2)設a4,且,求證:

【答案】(1)當時,上單調遞減;當時,上單調遞增,在上單調遞減

(2)證明見解析

【解析】

1)求導,判斷單調性即可;(2xx∈(01),則fx1)<fx2),即,得到,即得,再利用三角函數cos2x∈(),所以,代入即可證明.

(1)易知的定義域為,

時,恒成立,所以上單調遞減.

時,

,解得;

,解得.

所以上單調遞增,在上單調遞減,

綜上所述,當時,上單調遞減;

時,上單調遞增,在上單調遞減.

(2)當時,

由(1)可知上單調遞增.

,且,則,即,

所以,所以.

因為,所以.

所以,即,

因為,所以,所以.

所以.

綜上可得,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等六項專項附加扣除.某單位老、中、青員工分別有人,現采用分層抽樣的方法,從該單位上述員工中抽取人調查專項附加扣除的享受情況.

(Ⅰ)應從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.

員工

項目

A

B

C

D

E

F

子女教育

×

×

繼續教育

×

×

×

大病醫療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養老人

×

×

×

(i)試用所給字母列舉出所有可能的抽取結果;

(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,底面是平行四邊形的四棱錐中,,,且,若平面,則______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.

1)求直線的普通方程和曲線C的直角坐標方程;

2)設點P為曲線C上的動點,點M,N為直線上的兩個動點,若是以為直角的等腰三角形,求直角邊長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, ADAC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為(

A.7B.12C.6D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值.

(1)求函數的單調區間;

(2)若函數上恰有兩個不同的零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)當時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于,若數列滿足,則稱這個數列為“K數列”.

(Ⅰ)已知數列:1,m+1,m2是“K數列”,求實數的取值范圍;

(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和滿足

?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列不是“K數列”,若,試判斷數列是否為“K數列”,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系中的坐標原點為極點,軸的正半抽為極軸,建立極坐標系,曲線的極坐標方程是,直線的參數方程是為參數).

1)求曲線的直角坐標方程;

2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视