精英家教網 > 高中數學 > 題目詳情

【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.

(1)證明:DB=DC;
(2)設圓的半徑為1,BC= ,延長CE交AB于點F,求△BCF外接圓的半徑.

【答案】
(1)證明:連接DE交BC于點G.

由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,

∴∠CBE=∠BCE,BE=CE.

又∵DB⊥BE,∴DE為⊙O的直徑,∠DCE=90°.

∴△DBE≌△DCE,∴DC=DB.


(2)證明:由(1)可知:∠CDE=∠BDE,DB=DC.

故DG是BC的垂直平分線,∴BG=

設DE的中點為O,連接BO,則∠BOG=60°.

從而∠ABE=∠BCE=∠CBE=30°.

∴CF⊥BF.

∴Rt△BCF的外接圓的半徑=


【解析】(1)連接DE交BC于點G,由弦切角定理可得∠ABE=∠BCE,由已知角平分線可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE為⊙O的直徑,Rt△DBE≌Rt△DCE,利用三角形全等的性質即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分線,即可得到BG= .設DE的中點為O,連接BO,可得∠BOG=60°.從而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.進而得到Rt△BCF的外接圓的半徑=

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于函數,下列命題:時,為奇函數;的圖象關于中心對稱;,時,方程只有一個實根;方程至多有兩個實根,其中正確的個數有  

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】上海自貿區某種進口產品的關稅稅率為,其市場價格(單位:千元,與市場供應量(單位:萬件)之間近似滿足關系式:

1)請將表示為關于的函數,并根據下列條件計算:若市場價格為7千元,則市場供應量約為2萬件.試確定的值;

2)當時,經調查,市場需求量(單位:萬件)與市場價格近似滿足關系式:.為保證市場供應量不低于市場需求量,試求市場價格的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·湖南)某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,求下列問題:(1)求顧客抽獎1次能獲獎的概率(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 X ,求 X 的分布列和數學期望.
(1)(1)求顧客抽獎1次能獲獎的概率
(2)(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為 , 求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(1)“星隊”至少猜對3個成語的概率;
(2)“星隊”兩輪得分之和為X的分布列和數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在區間上的最大值為4,最小值為1

1)求實數、的值;

2)記,若上是單調函數,求實數的取值范圍;

3)對于函數,用,1,2,,將區間任意劃分成個小區間,若存在常數,使得和式對任意的劃分恒成立,則稱函數上的有界變差函數.記,試判斷函數是否為在上的有界變差函數?若是,求的最小值;若不是,請說明理由.

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中 中,已知曲線 經過點 ,其參數方程為 為參數),以原點 為極點, 軸的正半軸為極軸建立極坐標系.
(1)求曲線 的極坐標方程;
(2)若直線 于點 ,且 ,求證: 為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若對于定義在上的函數,其圖象是連續不斷的,且存在常數使得對任意實數都成立,則稱是一個“特征函數”.下列結論中正確的個數為( 。

是常數函數中唯一的“特征函數”;

不是“特征函數”;

③“特征函數”至少有一個零點;

是一個“特征函數”.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2= ,且直線l經過曲線C的左焦點F. ( I )求直線l的普通方程;
(Ⅱ)設曲線C的內接矩形的周長為L,求L的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视