精英家教網 > 高中數學 > 題目詳情

已知函數
(Ⅰ)請寫出函數在每段區間上的解析式,并在圖中的直角坐標系中作出函數的圖象;
(II)若不等式對任意的實數恒成立,求實數的取值范圍.

(Ⅰ)
函數的圖象如下圖所示:

(II)

解析試題分析:(Ⅰ)去絕對值符號,再畫出函數圖象;(II)轉化為,需先利用導數求
試題解析:(Ⅰ) 
函數的圖象如下圖所示:
  
(II)由題可知:   
而又由(Ⅰ)中的圖象可得出 
于是  ,
解得:  
故實數的取值范圍是             
考點:絕對值不等式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,
(1)當時,判斷并證明的奇偶性;
(2)是否存在實數,使得是奇函數?若存在,求出;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)不等式對一切R恒成立,求實數的取值范圍;
(2)已知是定義在上的奇函數,當時,,求的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,其中是常數,且
(1)求函數的極值;
(2)證明:對任意正數,存在正數,使不等式成立;
(3)設,且,證明:對任意正數都有:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數y=
(Ⅰ)求函數y的最小正周期;
(Ⅱ)求函數y的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,曲線在點處的切線方程為
(1)確定的值
(2)若過點(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設曲線在點處的切線都過點(0,2),證明:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-2alnx(a>0)
(I)求函數f(x)的單調區間和最小值.
(II)若方程f(x)=2ax有唯一解,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中,區間
(Ⅰ)求的長度(注:區間的長度定義為);
(Ⅱ)給定常數,當時,求長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知O為坐標原點,

(1)求的單調遞增區間;
(2)若的定義域為,值域為[2,5],求m的值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视