【題目】求矩陣M=的特征值和特征向量.
【答案】矩陣M=有兩個特征值λ1=7,λ2=-2.屬于λ1=7的一個特征向量為
,屬于λ2=-2的一個特征向量為
.
【解析】
令特征多項式等于0可得特征值,根據特征方程組可解得特征向量.
特征多項式f(λ)==(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2),
由f(λ)=0,解得λ1=7,λ2=-2.
將λ1=7代入特征方程組,得即y=2x,可取
為屬于特征值λ1=7的一個特征向量.
同理,λ2=-2時,特征方程組是即x=-4y,所以可取
為屬于特征值λ2=-2的一個特征向量.
綜上所述,矩陣M=有兩個特征值λ1=7,λ2=-2.屬于λ1=7的一個特征向量為
,屬于λ2=-2的一個特征向量為
.
科目:高中數學 來源: 題型:
【題目】在一次期末數學測試中,唐老師任教班級學生的考試得分情況如表所示:
分數區間 | |||||
人數 | 2 | 8 | 32 | 38 | 20 |
(1)根據上述表格,試估計唐老師所任教班級的學生在本次期末數學測試的平均成績;
(2)現從成績在中按照分數段,采取分層抽樣的方法隨機抽取5人,再在這5人中隨機抽取2人作小題得分分析,求恰有1人的成績在
上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀:
已知、
,
,求
的最小值.
解法如下:,
當且僅當,即
時取到等號,
則的最小值為
.
應用上述解法,求解下列問題:
(1)已知,
,求
的最小值;
(2)已知,求函數
的最小值;
(3)已知正數、
、
,
,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
是
上一點.
(1)求橢圓的方程;
(2)設是
分別關于兩坐標軸及坐標原點的對稱點,平行于
的直線
交
于異于
的兩點
.點
關于原點的對稱點為
.證明:直線
與
軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正三棱柱中,所有棱長都是3,點D,E分別是線段
和
上的點,
.
(1)試確定點E的位置,使得平面
,并證明;
(2)若直線與平面
所成角的正弦值為
,求二面角
的余弦值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體,點
是棱
的中點,設直線
為
,直線
為
.對于下列兩個命題:①過點
有且只有一條直線
與
、
都相交;②過點
有且只有一條直線
與
、
都成
角.以下判斷正確的是( )
A.①為真命題,②為真命題B.①為真命題,②為假命題
C.①為假命題,②為真命題D.①為假命題,②為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為
(t為參數),直線
過點
且傾斜角為
,以坐標原點O為極點,x軸正半軸為極軸,取相同的單位長度建立極坐標系.
(1)寫出曲線C的極坐標方程和直線的參數方程;
(2)若直線l與曲線C交于兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com