【題目】在如圖所示的三棱錐中,
是邊長為2的等邊三角形,
,
是
的中位線,
為線段
的中點.
(1)證明:.
(2)若二面角為直二面角,求二面角
的余弦值.
【答案】(1)見解析;(2).
【解析】
(1)如圖,由中位線可得,取
的中點為
,取
的中點
,連接
,可證
平面
,從而可證
.
(2)建立如圖所示的空間直角坐標系,計算出平面的法向量和平面
的法向量的夾角的余弦值后可得二面角
的余弦值.
(1)如圖,取的中點為
,取
的中點
,連接
.
因為是邊長為2的等邊三角形,
,所以
.
因為,故
,故
.
因為,所以
且
,所以
.
因為,故
,所以
.
因為,
平面
,
平面
,故
平面
,
因為平面
,
.
因為,故
,所以
.
(2)由(1)可得,
所以為二面角
的平面角,
因為二面角為直二面角,所以
即
.
建立如圖所示的空間直角坐標系,
則.
故,
,
.
設平面的法向量為
,
則即
,故
,取
,則
,
所以.
設平面的法向量為
,
則即
,取
,則
,
故,
所以,
因為二面角的平面角為銳角,
故二面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點,以
軸正半軸為極軸的極坐標中,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點的坐標為
,圓
與直線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】謝爾賓斯基三角形(英語:Sierpinskitriangle)是一種分形,由波蘭數學家謝爾賓斯基在1915年提出.具體操作是:先取一個實心正三角形(圖1),挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形)(圖2),然后在剩下的三個小三角形中又各挖去一個“中心三角形”(圖3),我們用黑色三角形代表剩下的面積,用上面的方法可以無限連續地作下去.若設操作次數為3(每挖去一次中心三角形算一次操作),在圖中隨機選取一個點,則此點取自黑色三角形的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若的圖象在
處的切線恰好也是
圖象的切線.
①求實數的值;
②若方程在區間
內有唯一實數解,求實數
的取值范圍.
(2)當時,求證:對于區間
上的任意兩個不相等的實數
,
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數圖象上不同兩點
,
,
,
處的切線的斜率分別是
,
,規定
叫曲線
在點
與點
之間的“彎曲度”,給出以下命題:
(1)函數圖象上兩點
、
的橫坐標分別為1,2,則
;
(2)存在這樣的函數,圖象上任意兩點之間的“彎曲度”為常數;
(3)設點、
是拋物線,
上不同的兩點,則
;
(4)設曲線上不同兩點
,
,
,
,且
,若
恒成立,則實數
的取值范圍是
;
以上正確命題的序號為__(寫出所有正確的)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數,不等式
的解集有且只有一個元素,設數列
的前
項和
.
(1)求數列的通項公式;
(2)若數列滿足
,求數列
的前
項和
.
(3)設各項均不為0的數列中,滿足
的正整數
的個數稱為這個數列
的變號數,令
,求數列
的變號數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,點
是圓
上一動點,動點
滿足
,點
在直線
上,且
.
(1)求點的軌跡
的標準方程;
(2)已知點在直線
上,過點
作曲線
的兩條切線,切點分別為
,記點
到直線
的距離分別為
,求
的最大值,并求出此時
點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的方程為
,定點
,點
是曲線
上的動點,
為
的中點.
(1)求點的軌跡
的直角坐標方程;
(2)已知直線與
軸的交點為
,與曲線
的交點為
,若
的中點為
,求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com