已知二次函數的圖象經過坐標原點,其導函數為
,數列
的前
項和為
,點
均在函數
的圖像上.
(1)求的解析式;
(2)求數列的通項公式;
(3)設,
是數列
的前n項和,求使得
對所有
都成立的最小正整數
.
(1) (2)
(3)10
解析試題分析:(1)利用導函數及待定系數法求解;(2)利用與
的關系
求通項公式,要注意對
進行討論;(3)數列求和的方法由數列的通項公式決定.常用的方法有:公式求和法、倒序相加法、錯位相減法、裂項相消法、分組轉化法等。先利用裂項相消法求和,再求其最大值,就得到
的取值范圍.
試題解析:(1)依題意設二次函數,則
. 1分
由于,得:
2分
所以. 3分
(2)由點均在函數
的圖像上,又
,
所以. 4分
當時,
5分
當時,
7分
所以, 8分
(3)由(2)得知=
9分
=, 11分
故=
=. 12分
要使(
)成立,需要滿足
≤
,13分
即,所以滿足要求的最小正整數m為10. 14分
考點:1.導數運算 2.通項公式、前n項和的求法 3.函數(數列)最值的求法
科目:高中數學 來源: 題型:解答題
2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為(
=100萬輛),第
年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為
,該年的增長量
和
與
的乘積成正比,比例系數為
其中
=200萬.
(1)證明:;
(2)用表示
;并說明該市汽車總擁有量是否能控制在200萬輛內.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知正項數列的前
項和為
,
是
與
的等比中項.
(1)求證:數列是等差數列;
(2)若,且
,求數列
的通項公式;
(3)在(2)的條件下,若,求數列
的前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列中,
,前
和
(Ⅰ)求證:數列是等差數列; (Ⅱ)求數列
的通項公式;
(Ⅲ)設數列的前
項和為
,是否存在實數
,使得
對一切正整數
都成立?若存在,求
的最小值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知無窮數列中,
、
、
、
構成首項為2,公差為-2的等差數列,
、
、
、
,構成首項為
,公比為
的等比數列,其中
,
.
(1)當,
,時,求數列
的通項公式;
(2)若對任意的,都有
成立.
①當時,求
的值;
②記數列的前
項和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定常數,定義函數
,數列
滿足
.
(1)若,求
及
;
(2)求證:對任意,;
(3)是否存在,使得
成等差數列?若存在,求出所有這樣的
,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com