【題目】已知函數 為奇函數
(1)求 的值.
(2)探究 的單調性,并證明你的結論.
(3)求滿足 的
的范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos22x﹣2,給出下列命題:
①β∈R,f(x+β)為奇函數;
②α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)用分層抽樣的方法在喜歡打藍球的學生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍球是否與性別有關,計算出K2 , 你有多大的把握認為是否喜歡打藍球與性別有關? 附:
下面的臨界值表供參考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx,x∈(0,2π),點P(x,y)是函數f(x)圖象上任一點,其中0(0,0),A(2π,0),記△OAP的面積為g(x),則g′(x)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 +
+
=m,求證:a2+b2+c2≥36.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣x3+3x2+9x+a(a為常數).
(1)求函數f(x)的單調遞減區間;
(2)若f(x)在區間[﹣2,2]上的最大值是20,求f(x)在該區間上的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com