精英家教網 > 高中數學 > 題目詳情

【題目】由函數y=sin x 的圖象經過( )變換,得到函數 y=sin(2x﹣ )的圖象.
A.縱坐標不變,橫坐標縮小到原來的 ,再向右平移 個單位
B.縱坐標不變,向右平移 個單位,再橫坐標縮小到原來的
C.縱坐標不變,橫坐標擴大到原來的 2 倍,再向左平移 個單位
D.縱坐標不變,向左平移 個單位,再橫坐標擴大到原來的 2 倍

【答案】B
【解析】解:y=sinx的圖象向右平移 個單位可得y=sin(x﹣ )的函數圖象,

再將y=sin(x﹣ )的函數圖象縱坐標不變,橫坐標縮小為原來的 得到y=sin(2x﹣ )的函數圖象,

故選:B.

【考點精析】通過靈活運用函數y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對一批產品的長度(單位:mm)進行抽樣檢測,下圖為檢測結果的頻率分布直方圖.根據標準,產品長度在區間[20,25)上的為一等品,在區間[15,20)和區間[25,30)上的為二等品,在區間[10,15)和[30,35)上的為三等品.用頻率估計概率,現從該批產品中隨機抽取一件,則其為二等品的概率為(
A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證: ;
(2)設c=(0,1),若 + =c,求α,β的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一點.若PA=AC=a,則當△MBD的面積為最小值時,直線AC與平面MBD所成的角為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面是被嚴重破壞的頻率分布表和頻率分布直方圖,根據殘表和殘圖,則 p= , q=

分數段

頻數

[60,70)

p

[70,80)

90

[80,90)

60

[90,100]

20

q

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 , , 是同一平面內的三個向量,其中 =(﹣ ,1).
(1)若| |=2 且 ,求 的坐標;
(2)若| |= ,( +3 )⊥( ),求向量 , 的夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱線長為1,線段B1D1上有兩個動點E,F,且EF= ,則下列結論中錯誤的是(
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A﹣BEF的體積為定值
D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,且an=2an1+2n(n≥2,且n∈N*
(1)求證:數列{ }是等差數列;
(2)求數列{an}的通項公式;
(3)設數列{an}的前n項之和Sn , 求證:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视