【題目】經銷商小王對其所經營的某一型號二手汽車的使用年數(0<
≤10)與銷售價格
(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關于
的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(Ⅰ)中所求的回歸方程,
預測為何值時,小王銷售一輛該型號汽車所獲得的利潤
最大.
科目:高中數學 來源: 題型:
【題目】以原點為圓心,半徑為的圓
與直線
相切.
(1)直線過點
且
截圓
所得弦長為
求直線
的方程;
(2)設圓與
軸的正半軸的交點為
,過點
作兩條斜率分別為
的直線交圓
于
兩點,且
,證明:直線
恒過一個定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人玩猜數字游戲,先由甲心中任想一個數字記為,再由乙猜甲剛才想的數字,把乙猜的數字記為
,且
、
.若
,則稱甲乙“心有靈犀”.現任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實數a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校夏令營有3名男同學和3名女同學
,其年級情況如下表,現從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).
一年級 | 二年級 | 三年級 | |
男同學 | |||
女同學 |
(1)用表中字母列舉出所有可能的結果;
(2)設為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數數列
的前
項和為
,
且
(1)求數列的通項公式;
(2)若且數列
是單調遞增數列,求實數
的取值范圍;
(3)若數列
滿足:
對于任意給定的正整數
,是否存在
使
?若存在,求
的值(只要寫出一組即可);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,g(x)= .
(1)證明方程f(x)=g(x)在區間(1,2)內有且僅有唯一實根;
(2)記max{a,b}表示a,b兩個數中的較大者,方程f(x)=g(x)在區間(1,2)內的實數根為x0 , m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)內有兩個不等的實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1
①若函數G(x)有兩相異零點且在
上是減函數,求實數m的取值范圍。
②是否存在整數a,b使得的解集恰好為
若存在,求出a,b的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com