【題目】已知常數數列
的前
項和為
,
且
(1)求數列的通項公式;
(2)若且數列
是單調遞增數列,求實數
的取值范圍;
(3)若數列
滿足:
對于任意給定的正整數
,是否存在
使
?若存在,求
的值(只要寫出一組即可);若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2y的焦點為F,過拋物線上一點M作拋物線C的切線l,l交y軸于點N.
(1)判斷△MFN的形狀;
(2)若A,B兩點在拋物線C上,點D(1,1)滿足 +
=
,若拋物線C上存在異于A,B的點E,使得經過A,B,E三點的圓與拋物線在點E處的有相同的切線,求點E的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
.
(1)若直線與圓
交于不同的兩點
,當
時,求
的值.
(2)若是直線
上的動點,過
作圓
的兩條切線
,切點為
,探究:直線
是否過定點;
(3)若為圓
的兩條相互垂直的弦,垂足為
,求四邊形
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商小王對其所經營的某一型號二手汽車的使用年數(0<
≤10)與銷售價格
(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關于
的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(Ⅰ)中所求的回歸方程,
預測為何值時,小王銷售一輛該型號汽車所獲得的利潤
最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且cosC= .
(1)求B;
(2)設CM是角C的平分線,且CM=1,b=6,求cos∠BCM.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上、下焦點分別為
,上焦點
到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=
.
(I)若P是橢圓C上任意一點,求的取值范圍;
(II)設過橢圓C的上頂點A的直線與橢圓交于點B(B不在y軸上),垂直于
的直線與
交于點M,與
軸交于點H,若
,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com