【題目】某校夏令營有3名男同學和3名女同學
,其年級情況如下表,現從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同).
一年級 | 二年級 | 三年級 | |
男同學 | |||
女同學 |
(1)用表中字母列舉出所有可能的結果;
(2)設為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,求事件
發生的概率.
科目:高中數學 來源: 題型:
【題目】華中師大附中中科教處為了研究高一學生對物理和數學的學習是否與性別有關,從高一年級抽取60名同學(男同學30名,女同學30名),給所有同學物理題和數學題各一題,讓每位同學自由選擇一道題進行解答.選題情況如表:(單位:人)
物理題 | 數學題 | 總計 | |
男同學 | 16 | 14 | 30 |
女同學 | 8 | 22 | 20 |
總計 | 24 | 36 | 60 |
(1)在犯錯誤的概率不超過1%的條件下,能否判斷高一學生對物理和數學的學習與性別有關?
(2)經過多次測試后發現,甲每次解答一道物理題所用的時間為5﹣8分鐘,乙每次解答一道物理題所用的時間為6﹣8分鐘,現甲、乙解同一道物理題,求甲比乙先解答完的概率;
(3)現從選擇做物理題的8名女生中任意選取兩人,對他們的解答情況進行全程研究,記甲、乙兩女生被抽到的人數為X,求X的分布列和數學期望. 附表及公式:
P(K2k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數的對稱性有如下結論:對于給定的函數,如果對于任意的
都有
成立
為常數),則函數
關于點
對稱.
(1)用題設中的結論證明:函數關于點
;
(2)若函數既關于點
對稱,又關于點
對稱,且當
時,
,求:①
的值;
②當時,
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0)為雙曲線 ﹣
=1(a>0,b>0)的左右頂點,點M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標準方程為( )
A.x2﹣ =1
B.x2﹣ =1
C.x2﹣y2=1
D.x2﹣ =1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商小王對其所經營的某一型號二手汽車的使用年數(0<
≤10)與銷售價格
(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關于
的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(Ⅰ)中所求的回歸方程,
預測為何值時,小王銷售一輛該型號汽車所獲得的利潤
最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個整數中等可能隨機產生.
(1)分別求出(按程序框圖正確編程運行時)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據自己對程序框圖的理解,各自編寫程序重復運行n次后,統計記錄了輸出y的值為i(i=1,2,3)的頻數,下面是甲、乙所作頻數統計表的部分數據:
甲的頻數統計表(部分)
運行次數 | 輸出y=1 的頻數 | 輸出y=2 的頻數 | 輸出y=3 的頻數 |
30 | 16 | 11 | 3 |
… | … | … | … |
2 000 | 967 | 783 | 250 |
乙的頻數統計表(部分)
運行次數 | 輸出y=1 的頻數 | 輸出y=2 的頻數 | 輸出y=3 的頻數 |
30 | 13 | 13 | 4 |
… | … | … | … |
2 000 | 998 | 803 | 199 |
當n=2 000時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷甲、乙中誰所編寫的程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某臺風中心位于海港城市東偏北
的150公里外,以每小時
公里的速度向正西方向快速移動,2.5小時后到達距海港城市
西偏北
的200公里處,若
,則風速
的值為_____公里/小時
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①直線l的方向向量為=(1,﹣1,2),直線m的方向向量
=(2,1,﹣
),則l與m垂直;
②直線l的方向向量=(0,1,﹣1),平面α的法向量
=(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為=(0,1,3),
=(1,0,2),則α∥β;
④平面α經過三點A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是______.(把你認為正確命題的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com