【題目】平面直角坐標系中,曲線
的參數方程為
(
為參數,且
).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線
上的動點,求
的中點M到曲線
的距離的最大值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為梯形,
,若棱
,
,
兩兩垂直,長度分別為1,2,2,且向量
與
夾角的余弦值為
.
(1)求的長度;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系內,曲線的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)把曲線和直線
化為直角坐標方程;
(2)過原點引一條射線分別交曲線
和直線
于
,
兩點,射線上另有一點
滿足
,求點
的軌跡方程(寫成直角坐標形式的普通方程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產品(這兩個公司每天都固定生產50件產品),所生產的產品均在本地銷售.產品進人市場之前需要對產品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進人市場.檢測員統計了甲、乙兩個下屬公司100天的生產情況及每件產品盈利虧損情況,數據如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數 | 10 | 10 | 40 | 40 | 50 | |
天數 | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數 | 10 | 5 | 40 | 45 | 50 | |
天數 | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2萬元 | 虧3萬元 |
乙公司 | 盈3萬元 | 虧3.5萬元 |
(1)分別求甲、乙兩個公司這100天生產的產品的正品率(用百分數表示).
(2)試問甲、乙兩個公司這100天生產的產品的總利潤哪個更大?說明理由.
(3)若以甲公司這100天中每天產品利潤總和對應的頻率作為概率,從甲公司這100天隨機抽取1天,記這天產品利潤總和為X,求X的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,曲線
的參數方程為
(
為參數,且
).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線
上的動點,求
的中點M到曲線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形中,
,以
為折痕把
折起,使點
到達點
的位置,且
.
(1)證明:平面
;
(2)若為
的中點,二面角
等于60°,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知圓和圓
的極坐標方程分別是
和
.
(1)求圓和圓
的公共弦所在直線的直角坐標方程;
(2)若射線:
與圓
的交點為O、P,與圓
的交點為O、Q,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一條東西流向的筆直河流,現利用航拍無人機監控河流南岸相距150米的
兩點處(
在
的正西方向),河流北岸的監控中心
在
的正北方100米處,監控控制車
在
的正西方向,且在通向
的沿河路上運動,監控過程中,保證監控控制車
到無人機
和到監控中心
的距離之和150米,平面
始終垂直于水平面
,且
,
兩點間距離維持在100米.
(1)當監控控制車到監控中心
的距離為100米時,求無人機
距離水平面
的距離;
(2)若記無人機看
處的俯角(
),監控過程中,四棱錐
內部區域的體積為監控影響區域
,請將
表示為關于
的函數,并求出監控影響區域的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的右焦點為F到直線
的距離為
,拋物線
的焦點與橢圓E的焦點F重合,過F作與x軸垂直的直線交橢圓于S,T兩點,交拋物線于C,D兩點,且
.
(1)求橢圓E及拋物線G的方程;
(2)過點F且斜率為k的直線l交橢圓于A,B點,交拋物線于M,N兩點,如圖所示,請問是否存在實常數,使
為常數,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com